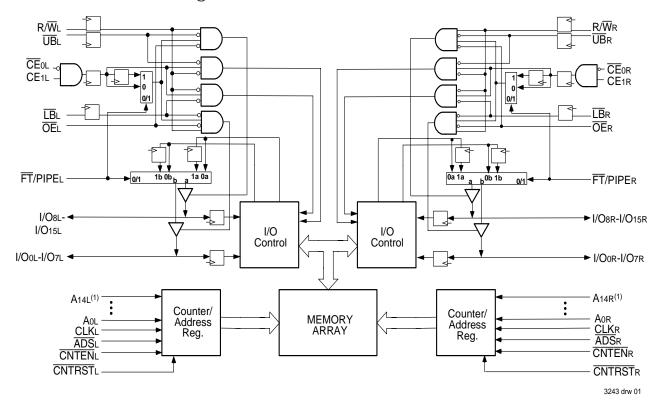


HIGH-SPEED 32/16K x 16 SYNCHRONOUS DUAL-PORT STATIC RAM

709279 ***709269S/L**

*SPECIFIED PART IS OBSOLETE NOT RECOMMENDED FOR NEW DESIGNS


Features

- True Dual-Ported memory cells which allow simultaneous access of the same memory location
- High-speed clock to data access
 - Commercial: 9/12/15ns (max.)
 - Industrial: 12ns (max.)
- Low-power operation
 - IDT709279/69S
 - Active: 950mW (typ.)
 - Standby: 5mW (typ.)
 - IDT709279/69L
 - Active: 950mW (typ.)
 - Standby: 1mW (typ.)
- Flow-Through or Pipelined output mode on either port via the FT/PIPE pin
- Dual chip enables allow for depth expansion without additional logic

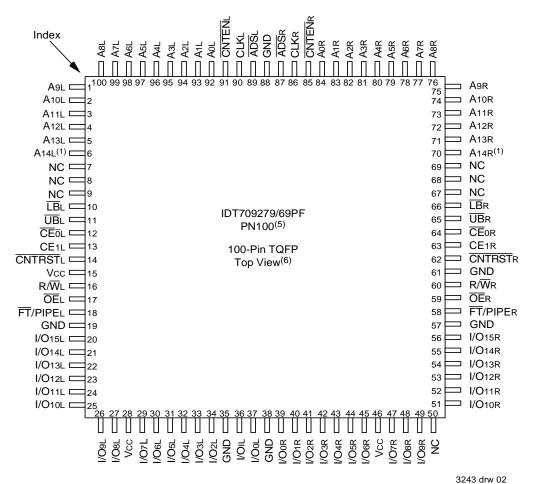
- Counter enable and reset features
- Full synchronous operation on both ports
 - 4ns setup to clock and 1ns hold on all control, data, and address inputs
 - Data input, address, and control registers
 - Fast 9ns clock to data out in the Pipelined output mode
 - Self-timed write allows fast cycle time
 - 15ns cycle time, 67MHz operation in Pipelined output mode
- Separate upper-byte and lower-byte controls for multiplexed bus and bus matching compatibility
- ◆ TTL- compatible, single 5V (±10%) power supply
- Industrial temperature range (-40°C to +85°C) is available for selected speeds
- Available in a 100-pin Thin Quad Flatpack (TQFP) package
- Green parts available. See ordering information

Note that information regarding recently obsoleted parts is included in this datasheet for customer convenience.

Functional Block Diagram

NOTE:

1. A_{14x} is a NC for IDT709269.


FEBRUARY 2018

Description

The IDT709279/69 is a high-speed 32/16K x 16 bit synchronous Dual-Port RAM. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times.

With an input data register, the IDT709279/69 has been optimized for applications having unidirectional or bidirectional data flow in bursts. An automatic power down feature, controlled by $\overline{\text{CE}}$ 0 and CE1, permits the on-chip circuitry of each port to enter a very low standby power mode. Fabricated using CMOS high-performance technology, these devices typically operate on only 950mW of power.

Pin Configurations (2,3,4)

3243 UIW 02

- 1. A₁₄x is a NC for IDT709269.
- 2. All Vcc pins must be connected to power supply.
- 3. All GND pins must be connected to ground supply.
- 4. Package body is approximately 14mm x 14mm x 1.4mm
- 5. This package code is used to reference the package diagram.
- 6. This text does not indicate orientation of the actual part-marking.

Pin Names

Left Port	Right Port	Names		
CEOL, CE1L	CEOR, CE1R	Chip Enables ⁽³⁾		
R/WL	R/W̄R	Read/Write Enable		
ŌĒL	OE r	Output Enable		
Aol - A14L ⁽¹⁾	Aor - A14R ⁽¹⁾	Address		
I/O0L - I/O15L	I/Oor - I/O15R	Data Input/Output		
CLKL	CLKR	Clock		
ŪB∟	UB _R	Upper Byte Select ⁽²⁾		
<u>LB</u> ∟	LB R	Lower Byte Select ⁽²⁾		
ADSL	ADS R	Address Strobe		
CNTENL	<u>CNTEN</u> R	Counter Enable		
<u>CNTRST</u> L	CNTRST _R	Counter Reset		
FT/PIPEL	FT/PIPER	Flow-Through/Pipeline		
V	'ss	Power		
G	ND	Ground		

3243 tbl 01

- 1. A14x is a NC for IDT709269.
- LB and UB are single buffered regardless of state of FT/PIPE.
 CEo and CE1 are single buffered when FT/PIPE = VIL, $\overline{\text{CE}}$ o and CE1 are double buffered when $\overline{\text{FT}}/\text{PIPE} = V_{\text{IH}}$, i.e. the signals take two cycles to deselect.

Truth Table I—Read/Write and Enable Control (1,2,3)

ŌĒ	CLK	<u>C</u> E₀	CE ₁	ШВ	ΪΒ	R/W	Upper Byte I/O8-15	Lower Byte I/O ₀₋₇	Mode
Х	1	Н	Χ	Χ	Х	Χ	High-Z	High-Z	Deselected—Power Down
Х	1	Х	L	Χ	Х	Х	High-Z	High-Z	Deselected—Power Down
Х	1	L	Н	Н	Н	Х	High-Z	High-Z	Both Bytes Deselected
Х	1	L	Н	L	Η	L	Din	High-Z	Write to Upper Byte Only
Х	1	L	Н	Н	L	L	High-Z	Din	Write to Lower Byte Only
Х	1	L	Н	Ш	┙	L	Din	Din	Write to Both Bytes
L	1	L	Н		Ι	Η	Dоит	High-Z	Read Upper Byte Only
L	1	L	Н	Н	L	Н	High-Z	Dout	Read Lower Byte Only
L	1	L	Н	L	L	Н	Dоит	Dout	Read Both Bytes
Н	Х	L	Н	L	L	Х	High-Z	High-Z	Outputs Disabled

NOTES:

- 1. "H" = VIH, "L" = VIL, "X" = Don't Care. 2. ADS, CNTEN, CNTRST = X.
- 3. $\overline{\text{OE}}$ is an asynchronous input signal.

Truth Table II—Address Counter Control (1,2)

External Address	Previous Internal Address	Internal Address Used	CLK	ĀDS	CNTEN	CNTRST	I/O ⁽³⁾	MODE
An	Х	An	1	L ⁽⁴⁾	Х	Н	Dvo (n)	External Address Used
Х	An	An + 1	1	Н	L ⁽⁵⁾	Н	Dvo(n+1)	Counter Enabled—Internal Address generation
Х	An + 1	An + 1	1	Н	Н	Н	Dvo(n+1)	External Address Blocked—Counter disabled (An + 1 reused)
Х	Х	A0	1	Χ	Х	L ⁽⁴⁾	Dvo(0)	Counter Reset to Address 0

NOTES: 3243 tbl 03

- 1. "H" = VIH, "L" = VIL, "X" = Don't Care.
- 2. \overline{CE}_0 , \overline{LB} , \overline{UB} , and \overline{OE} = V_{IL}; CE₁ and R/ \overline{W} = V_{IH}.
- 3. Outputs configured in Flow-Through Output mode: if outputs are in Pipelined mode the data out will be delayed by one cycle.
- 4. \overline{ADS} is independent of all other signals including \overline{CE}_0 , \overline{CE}_1 , \overline{UB} and \overline{LB} .
- 5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other signals including CEo, CE1, UB and LB.

Recommended Operating

Temperature and Supply Voltage⁽¹⁾

Grade	Ambient Temperature	GND	Vcc
Commercial	0°C to +70°C	0V	5.0V <u>+</u> 10%
Industrial	-40°C to +85°C	0V	5.0V <u>+</u> 10%

NOTES:

1. This is the parameter TA. This is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	٧
GND	Ground	0	0	0	٧
VIH	Input High Voltage	2.2	_	6.0 ⁽¹⁾	٧
VIL	Input Low Voltage	-0.5 ⁽²⁾	_	0.8	V

3243 tbl 05

NOTES:

- 1. VTERM must not exceed Vcc + 10%.
- 2. $VIL \ge -1.5V$ for pulse width less than 10ns.

Absolute Maximum Ratings(1)

Symbol	Rating	Commercial & Industrial	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TBIAS	TemperatureUnder Bias	-55 to +125	°C
Tstg	Storage Temperature	-65 to +150	°C
NLT	Junction Temperature	+150	۰C
Іоит	DC Output Current	50	mA

3243 tbl 06

NOTES

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq Vcc + 10%.
- 3. Ambient Temperature Under Bias. No AC Conditions. Chip Deselect.

Capacitance⁽¹⁾

 $(TA = +25^{\circ}C, f = 1.0MHz)$

Symbol	Parameter	Conditions ⁽²⁾	Max.	Unit
CIN	Input Capacitance	VIN = 0V	9	pF
Cout ⁽²⁾	Output Capacitance	Vout = 0V	10	pF

NOTES:

- These parameters are determined by device characterization, but are not production tested.
- 2. Cout also references CI/O.

DC Electrical Characteristics Over the Operating

Temperature Supply Voltage Range (Vcc = 5.0V ± 10%)

•			709279		
Symbol	Parameter	Test Conditions	Min.	Max.	Unit
LI	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, $Vin = 0V$ to Vcc	-	10	μΑ
ILO	Output Leakage Current	CE0 = VIH or CE1 = VIL, VOUT = 0V to VCC		10	μΑ
Vol	Output Low Voltage	IoL = +4mA	-	0.4	V
Vон	Output High Voltage	loн = -4mA	2.4	_	V

3243 tbl 08

NOTE

1. At Vcc ≤ 2.0V input leakages are undefined.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range $^{(6)}$ (Vcc = 5V \pm 10%)

		cappiy voitage i			70927 Com'l	9/69X9 Only	709279 Coi & I	m'l	709279/ Com'l		
Symbol	Parameter	Test Condition	Versio	n	Typ. ⁽⁴⁾	Max.	Typ. ⁽⁴⁾	Max.	Typ. ⁽⁴⁾	Max.	Unit
Icc	Dynamic Operating Current	CEL and CER= VIL Outputs Disabled f = fMAX ⁽¹⁾	COM'L	S L	210 210	390 350	200 200	345 305	190 190	325 285	mA
	(Both Ports Active)		IND	S L			200 200	380 340			
ISB1	Standby Current (Both Ports - TTL	$\overline{CE}L = \overline{CE}R = VIH$ $f = fMAX^{(1)}$	COM'L	S L	50 50	135 115	50 50	110 90	50 50	110 90	mA
	Level Inputs)		IND	S L			50 50	125 105			
ISB2	Standby Current (One Port - TTL	<u>CE</u> "A" = VIL and <u>CE</u> "B" = VIH ⁽³⁾	COM'L	S L	140 140	270 240	130 130	230 200	120 120	220 190	mA
	Level Inputs)	Active Port Outputs Disabled, f=fMAX ⁽¹⁾	IND	S L			130 130	245 215			
ISB3	Full Standby Current (Both Ports -	Both Ports CER and CEL ≥ VCC - 0.2V	COM'L	S L	1.0 0.2	15 5	1.0 0.2	15 5	1.0 0.2	15 5	mA
	ČMOS Level Inputs) V	$VIN \ge VCC - 0.2V \text{ or} VIN \le 0.2V, f = 0^{(2)}$	IND	S L			1.0 0.2	15 5			
ISB4	(One Port -	<u>CE</u> "A" ≤ 0.2V and <u>CE</u> "B" ≥ VCC - 0.2V ⁽⁵⁾	COM'L	S L	130 130	245 225	120 120	205 185	110 110	195 175	mA
	CMOS Level Inputs)	$\begin{array}{l} \text{VIN} \geq \overline{\text{VCC}} - 0.2 \text{V or} \\ \text{VIN} \leq 0.2 \text{V, Active Port Outputs} \\ \text{Disabled, f} = \text{fMAX}^{(1)} \end{array}$	IND	S L			120 120	220 200	_		

NOTES:

- 1. At f = fmax, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcvc, using "AC TEST CONDITIONS" at input levels of GND to 3V.
- 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.
- 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 5. $\overline{CE}x = VIL \text{ means } \overline{CE}0x = VIL \text{ and } CE1x = VIH$
 - $\overline{CE}x = V_{IH} \text{ means } \overline{CE}_{0}x = V_{IH} \text{ or } CE_{1}x = V_{IL}$
 - $\overline{\text{CE}}\text{x} \leq 0.2 \text{V}$ means $\overline{\text{CE}}\text{ox} \leq 0.2 \text{V}$ and $\text{CE}\text{1x} \geq \text{Vcc}$ 0.2 V
 - $\overline{\text{CE}}$ x \geq Vcc 0.2V means $\overline{\text{CE}}$ 0x \geq Vcc 0.2V or CE1x \leq 0.2V
 - "X" represents "L" for left port or "R" for right port.
- 6. 'X' in part numbers indicate power rating (S or L).

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1,2 and 3

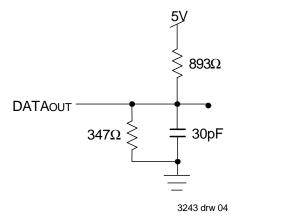


Figure 1. AC Output Test load.

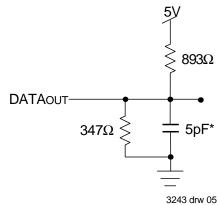


Figure 2. Output Test Load (For tcklz, tckHz, tolz, and toHz).
*Including scope and jig.

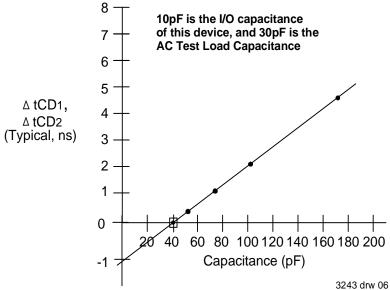


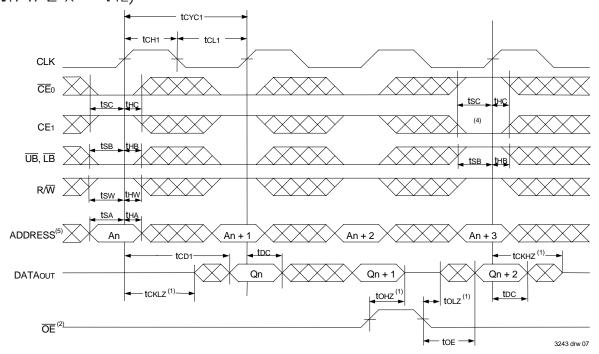
Figure 3. Typical Output Derating (Lumped Capacitive Load).

AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing) $^{(3,4)}$ (Vcc = 5V ± 10%, TA = 0°C to +70°C)

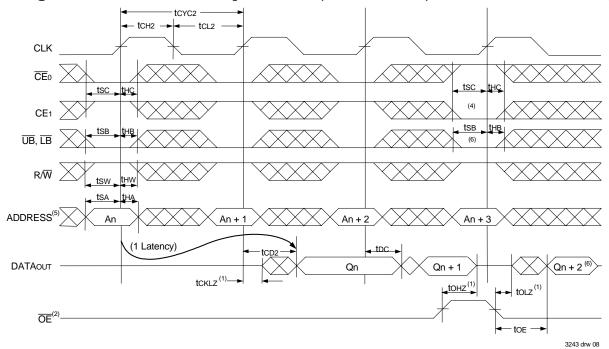
			9/69X9 I Only	709279/69X12 Com'l & Ind		709279/69X15 Com'l Only		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tcyc1	Clock Cycle Time (Flow-Through) ⁽²⁾	25	_	30	_	35	_	ns
tcvc2	Clock Cycle Time (Pipelined) ⁽²⁾	15	_	20	_	25	_	ns
tcн1	Clock High Time (Flow-Through) ⁽²⁾	12	_	12	_	12	_	ns
tcl1	Clock Low Time (Flow-Through) ⁽²⁾	12	_	12	_	12	_	ns
tcH2	Clock High Time (Pipelined) ⁽²⁾	6	_	8	_	10	_	ns
tCL2	Clock Low Time (Pipelined) ⁽²⁾	6	_	8	_	10	_	ns
tr	Clock Rise Time	_	3		3	_	3	ns
tF	Clock Fall Time	_	3		3	_	3	ns
tsa	Address Setup Time	4	_	4	_	4	_	ns
tha	Address Hold Time	1	_	1	_	1	_	ns
tsc	Chip Enable Setup Time	4	_	4	_	4	_	ns
thc	Chip Enable Hold Time	1	_	1	_	1	_	ns
tsb	Byte Enable Setup Time	4	_	4	_	4	_	ns
tнв	Byte Enable Hold Time	1	_	1	_	1	_	ns
tsw	R/W Setup Time	4	_	4	_	4	_	ns
thw	R/W Hold Time	1	_	1	_	1	_	ns
tsd	Input Data Setup Time	4	_	4	_	4	_	ns
thd	Input Data Hold Time	1	_	1	_	1	_	ns
tsad	ADS Setup Time	4	_	4	_	4	_	ns
thad	ADS Hold Time	1	_	1	_	1	_	ns
tscn	CNTEN Setup Time	4	_	4	_	4	_	ns
then	CNTEN Hold Time	1	_	1		1	_	ns
tsrst	CNTRST Setup Time	4		4		4	_	ns
thrst	CNTRST Hold Time	1	_	1		1	_	ns
toe	Output Enable to Data Valid		9		12	_	15	ns
tolz	Output Enable to Output Low-Z ⁽¹⁾	2	_	2		2	_	ns
toнz	Output Enable to Output High-Z ⁽¹⁾	1	7	1	7	1	7	ns
tcD1	Clock to Data Valid (Flow-Through) ⁽²⁾		20		25	_	30	ns
tCD2	Clock to Data Valid (Pipelined) ⁽²⁾	_	9		12	_	15	ns
tDC	Data Output Hold After Clock High	2	_	2		2	_	ns
tckhz	Clock High to Output High-Z ⁽¹⁾	2	9	2	9	2	9	ns
tcklz	Clock High to Output Low-Z ⁽¹⁾	2	_	2	_	2	_	ns
Port-to-Port [1				•		
tcwdd	Write Port Clock High to Read Data Delay	_	35		40	_	50	ns
tccs	Clock-to-Clock Setup Time	_	15		15	_	20	ns

NOTES:

32/13 tbl 1

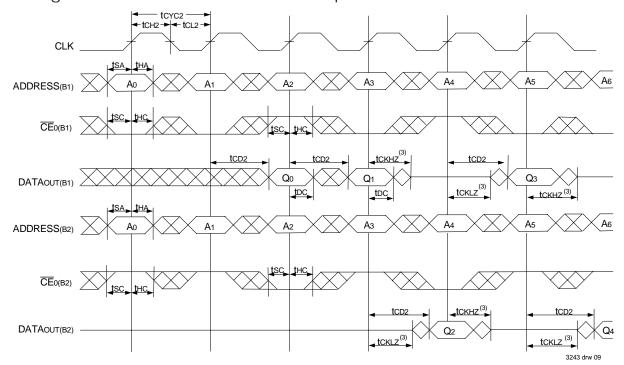

^{1.} Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed by device characterization, but is not production tested.

^{2.} The Pipelined output parameters (tcvc2, tcb2) apply to either or both left and right ports when FT/PIPE = VIH. Flow-through parameters (tcvc1, tcb1) apply when FT/PIPE = VIL for that port.

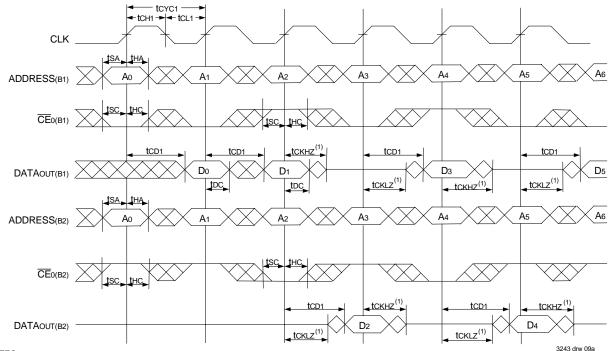

^{3.} All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE) and FT/PIPE. FT/PIPE should be treated as a DC signal, i.e. steady state during operation.

^{4. &#}x27;X' in part number indicates power rating (S or L).

Timing Waveform of Read Cycle for Flow-Through Output $(FT/PIPE"x" = VIL)^{(3,7)}$

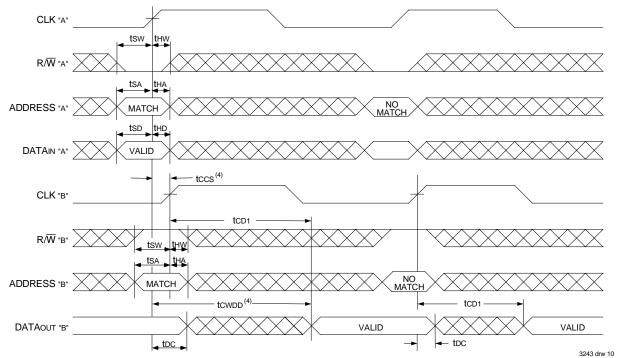


Timing Waveform of Read Cycle for Pipelined Output (\overline{FT} /PIPE"X" = VIH) $^{(3,7)}$

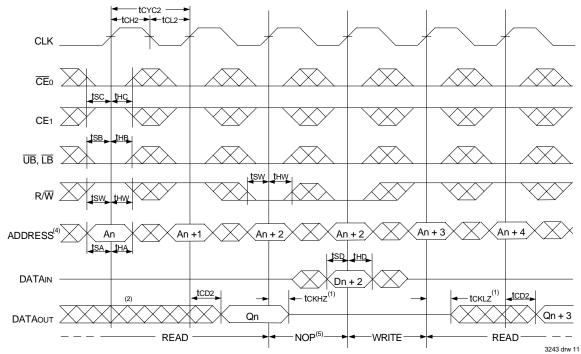


- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. $\overline{\text{OE}}$ is asynchronously controlled; all other inputs are synchronous to the rising clock edge.
- 3. $\overline{ADS} = VIL$, \overline{CNTEN} and $\overline{CNTRST} = VIH$.
- 4. The output is disabled (High-Impedance state) by $\overline{\text{CE}}_0 = \text{V}_{\text{IH}}$, $\overline{\text{CE}}_1 = \text{V}_{\text{II}}$, $\overline{\text{UB}} = \text{V}_{\text{IH}}$, or $\overline{\text{LB}} = \text{V}_{\text{IH}}$ following the next rising edge of the clock. Refer to Truth Table 1.
- 5. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 6. If $\overline{\sf UB}$ or $\overline{\sf LB}$ was HIGH, then the Upper Byte and/or Lower Byte of DATAout for Qn + 2 would be disabled (High-Impedance state).
- 7. "x" denotes Left or Right port. The diagram is with respect to that port.

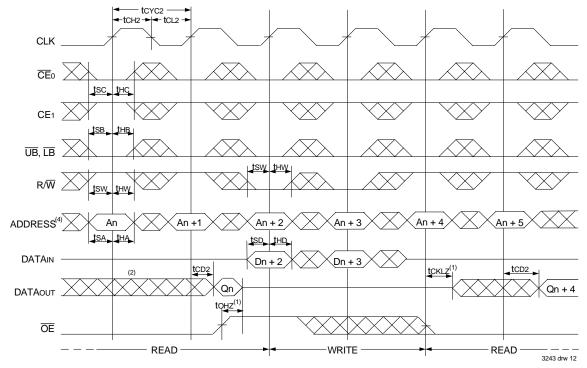
Timing Waveform of a Bank Select Pipelined Read (1,2)



Timing Waveform of a Bank Select Flow-Through Read⁽⁶⁾

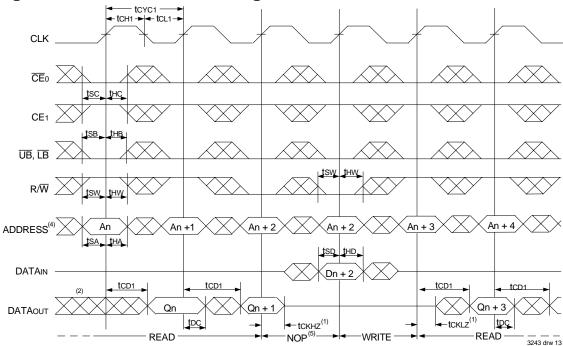

- 1. B1 Represents Bank #1; B2 Represents Bank #2. Each Bank consists of one IDT709279/69 for this waveform, and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.
- 2. $\overline{\text{UB}}$, $\overline{\text{LB}}$, $\overline{\text{OE}}$, and $\overline{\text{ADS}}$ = VIL; CE1(B1), CE1(B2), R/W, $\overline{\text{CNTEN}}$, and $\overline{\text{CNTRST}}$ = VIH.
- 3. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 4. $\overline{\text{CE}}_0$, $\overline{\text{UB}}$, $\overline{\text{LB}}$, and $\overline{\text{ADS}} = \text{Vil.}$; CE1, $\overline{\text{CNTEN}}$, and $\overline{\text{CNTRST}} = \text{Viii}$.
- 5. \overline{OE} = V_{IL} for the Right Port, which is being read from. \overline{OE} = V_{IH} for the Left Port, which is being written to.
- 6. If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwbb.
 If tccs > maximum specified, then data from right port READ is not valid until tccs + tcb1, tcwbb does not apply in this case.

Timing Waveform with Port-to-Port Flow-Through Read (1,2,3,5)

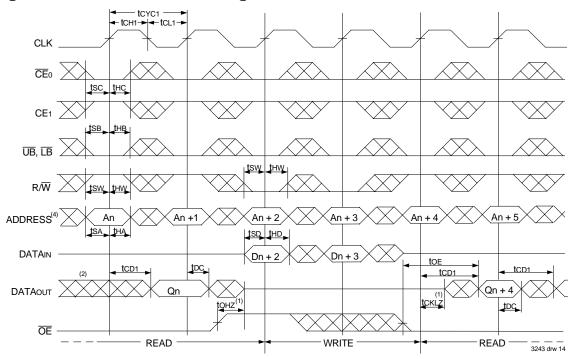


- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. \overline{CE}_0 , \overline{UB} , \overline{LB} , and $\overline{ADS} = V_{IL}$; \overline{CE}_1 , \overline{CNTEN} , and $\overline{CNTRST} = V_{IH}$.
- 3. \overline{OE} = VIL for the Right Port, which is being read from. \overline{OE} = VIH for the Left Port, which is being written to.
- 4. If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwpb. If tccs > maximum specified, then data from right port READ is not valid until tccs + tcp1. tcwpb does not apply in this case.
- 5. All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".

Timing Waveform of Pipelined Read-to-Write-to-Read (**OE** = VIL)(3)

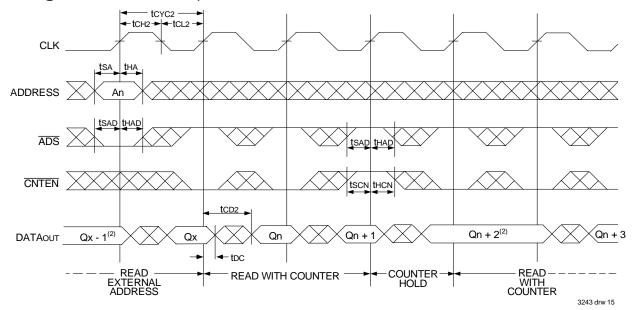


Timing Waveforn of Pipelined Read-to-Write-to-Read (OE Controlled)(3)

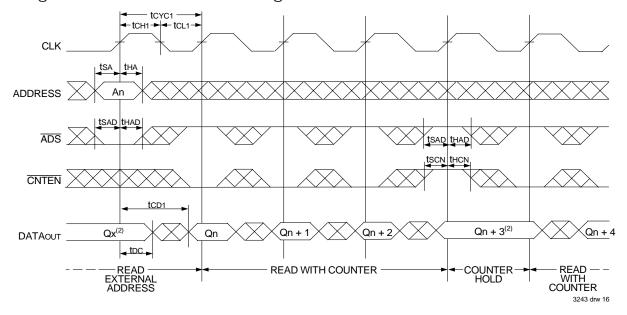


- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 3. CEo, UB, LB, and ADS = VIL; CE1, CNTEN, and CNTRST = VIH.
- 4. Addresses do not have to be accessed sequentially since $\overline{ADS} = V_{IL}$ constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.

Timing Waveform of Flow-Through Read-to-Write-to-Read (**OE** = VIL)(3)

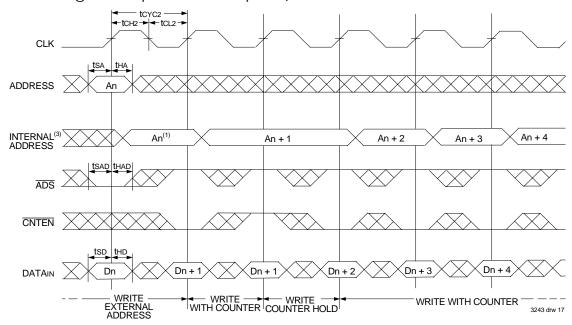


Timing Waveform of Flow-Through Read-to-Write-to-Read (**OE** Controlled)(3)

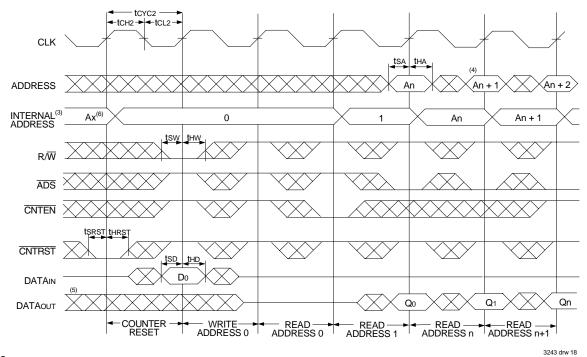


- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. Output state (High, Low, or High-impedance is determined by the previous cycle control signals.
- 3. CEo, UB, LB, and ADS = VIL; CE1, CNTEN, and CNTRST = VIH.
- 4. Addresses do not have to be accessed sequentially since $\overline{ADS} = V_{IL}$ constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.

Timing Waveform of Pipelined Read with Address Counter Advance⁽¹⁾



Timing Waveform of Flow-Through Read with Address Counter Advance⁽¹⁾



- 1. $\overline{\text{CE}}_0$, $\overline{\text{OE}}$, $\overline{\text{UB}}$, and $\overline{\text{LB}}$ = VIL; CE1, R/ $\overline{\text{W}}$, and $\overline{\text{CNTRST}}$ = VIH.
- 2. If there is no address change via $\overline{ADS} = VIL$ (loading a new address) or $\overline{CNTEN} = VIL$ (advancing the address), i.e. $\overline{ADS} = VIH$ and $\overline{CNTEN} = VIH$, then the data output remains constant for subsequent clocks.

Timing Waveform of Write with Address Counter Advance (Flow-Through or Pipelined Outputs)(1)

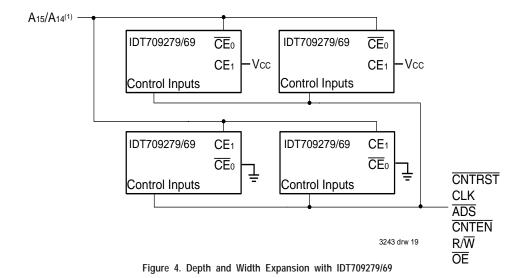
Timing Waveform of Counter Reset (Pipelined Outputs)(2)

1. \overline{CE}_0 , \overline{UB} , \overline{LB} , and $R/\overline{W} = VIL$; CE_1 and $\overline{CNTRST} = VIH$.

- 2. \overline{CE}_0 , \overline{UB} , \overline{LB} = VIL; CE1 = VIH.
- 3. The "Internal Address" is equal to the "External Address" when $\overline{ADS} = V_{IL}$ and equals the counter output when $\overline{ADS} = V_{IH}$.
- 4. Addresses do not have to be accessed sequentially since ADS = V_{IL} constantly loads the address on the rising edge of the CLK; numbers are for reference use
- 5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 6. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset cycle. ADDRo will be accessed. Extra cycles are shown here simply for clarification.
- CNTEN = VIL advances Internal Address from 'An' to 'An +1'. The transition shown indicates the time required for the counter to advance. The 'An +1'Address is written to during this cycle.

A Functional Description

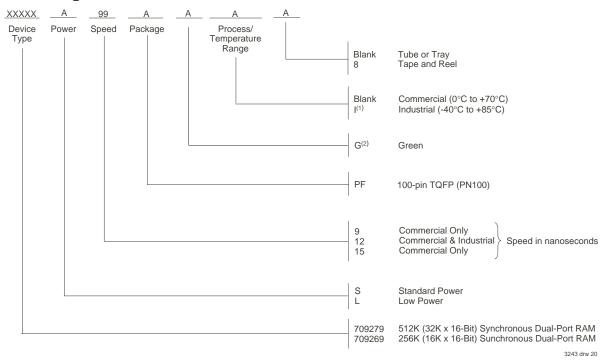
The IDT709279/69 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide minimal set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal, however, the self-timed internal write pulse is independent of the LOW to HIGH transition of the clock signal.


An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the address counters for fast interleaved memory applications.

A HIGH on $\overline{\text{CE}}_0$ or a LOW on CE₁ for one clock cycle will power down the internal circuitry to reduce static power consumption. Multiple chip enables allow easier banking of multiple IDT709279/69's for depth expansion configurations. When the Pipelined output mode is enabled, two cycles are required with $\overline{\text{CE}}_0$ LOW and CE₁ HIGH to re-activate the outputs.

Depth and Width Expansion

The IDT709279/69 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth.


The IDT709279/69 can also be used in applications requiring expanded width, as indicated in Figure 4. Since the banks are allocated at the discretion of the user, the external controller can be set up to drive the input signals for the various devices as required to allow for 32-bit orwider applications.

NOTE:

1. A14 is for IDT709269.

Ordering Information

NOTES:

- 1. Industrial temperature range is available. For specific speeds, packages and powers contact your sales office.
- Green parts available. For specific speeds, packages and powers contact your local sales office.
 LEAD FINISH (SnPb) parts are Obsolete. Product Discontinuation Notice PDN# SP-17-02
 Note that information regarding recently obsoleted parts is included in this datasheet for customer convenience.

Ordering Information for Flow-through Devices

<u>Ordering miormation to</u>	1 1 10W-till ough Devices
Old Flow-through Part	New Combined Part
70927S/L20	709279S/L9
70927S/L25	709279S/L12
70927S/L30	709279S/L15

3243 tbl 12

IDT Clock Solution for IDT709279/69 Dual-Port

B. Grook Gordina i B. 17 G. 12 17 77 G. 12 Gar. 1 G. C							
IDT Dual-Port Part Number	Dual-Port I/O Specitications		Clock Specifications				IDT
	Voltage	I/O	Input Capacitance	Input Duty Cycle Requirement	Maximum Frequency	Jitter Tolerance	Non-PLL Clock Device
709279/69	5	TTL	9pF	40%	100	150ps	49FCT805T

Datasheet Document History

12/9/98: Initiated datasheet document history

Converted to new format

Cosmetic and typographical corrections Added additional notes to pin configurations Pages 13 & 14 Updated timing waveforms

Page 15 Added Depth and Width Expansion section

06/03/99: Changed drawing format

Page 3 Deleted note 6 for Table II

11/10/99: Replaced IDT logo

03/31/00: Combined Pipelined 709279 family and Flow-through 70927 family offerings into one data sheet

Changed ±200mV in waveform notes to 0mV

Added corresponding part chart with ordering information

05/24/00: Page 1 Inserted diamond in copy

Page 4 Changed information in Truth Table II, Increased storage temperature parameter, clarified Taparameter

Page 5 Changed DC Electrical parameters-changed wording from "Open" to "Disabled"

Page 16 Fixed typeface in heading

Added Industrial Temperature Ranges and removed related notes

08/24/01: Pages 1, 16 and Page Header Removed Preliminary status

Page 5 & 7 Removed Industrial Temperature Ranges for 15ns speed from DC and AC Electrical Characteristics

Page 16 Removed Industrial Temperature from 15ns speed in ordering information

06/21/04: Consolidated multiple devices into one datasheet

Page 2 Added date revision to pin configuration

Page 4 Added Junction Temperature to Absolute Maximum Ratings Table

Added Ambient Temperature footnote

 $Page \ 5 \ \& \ 6 \ \ Added \ 6ns \ \& \ 7ns \ speed \ DC \ power \ numbers \ to \ the \ DC \ Electrical \ Characteristics \ Table$

Page 8 Added 6ns & 7ns speed AC timing numbers to the AC Electrical Characteristics Table

Page 17 Added 6ns & 7ns speed grades to ordering information

Added IDT Clock Solution Table

Page 1 & 18 Replaced old ® logo with new ™ logo

01/29/09: Page 17 Removed "IDT" from orderable part number

06/24/15: Page 1 Added green availability to Features

Page 2 Removed IDT in reference to fabrication

Page 2 Removed date from the 100-pin TQFP configuration

Page 2 & 17 The package code PN100-1 changed to PN100 to match standard package codes
Page 5 Removed the X6 & X7 speed grade options and combined the X9, X12 & X15 speed grade

options into one DC Elec Chars table

Page 7 Removed the X6 & X7 speed grade options from the AC Elec Chars table

Page 16 Added Green and Tape & Reel indicators to the Ordering Information

02/02/18: Product Discontinuation Notice - PDN# SP-17-02

Last time buy expires June 15, 2018

04/22/19: 709269 is obsolete

709279 is still active

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/