

Technical documentation

Support & training

DLPC230-Q1, DLPC231-Q1 DLPS054G – DECEMBER 2015 – REVISED SEPTEMBER 2023

DLPC23x-Q1 Automotive Digital Micromirror Device Controller

1 Features

- Qualified for automotive applications
- AEC-Q100 qualified with the following results:
 - Device temperature grade 2: -40°C to 105°C ambient operating temperature
 - Device HBM ESD Classification Level 2
 - Device CDM ESD Classification Level C4B
- DMD display controller supporting:
 - DLP553x-Q1 and DLP462x-Q1 automotive
 - interior display and exterior lighting chipsets Video processing
 - Scales input image to Match DMD resolution
 - Bezel adjustment up ±50% vertical image position and ±10% horizontal reducing the need for mechanical alignment (HUD)
 - Support for pixel doubling or quadrupling to allow low resolution video input
 - Gamma correction
- Embedded processor with error correction (ECC)
 - On-chip diagnostic and self-test capability
 - System diagnostics including temperature monitoring, device interface monitoring, and photodiode monitoring
 - Integrated Management of Smooth DimmingConfigurable GPIO
- No external RAM required, internal SRAM for image processing
- 600-MHz Sub-LVDS DMD interface for low power and emission
- Spread spectrum clocking for reduced EMI
- Video input interface
 - Single OpenLDI (FPD-Link I) port up to 110 MHz
 - 24-bit RGB parallel interface up to 110 MHz
- Configurable host control interface
 - Serial Peripheral Interface (SPI) 10 MHz
 - I²C (400 kHz)
 - Host IRQ signal to provide real-time feedback for critical system errors
- Interface to TPS99000-Q1 system management and illumination controller

2 Applications

- Wide field of view and augmented reality head-up display (HUD)
- Digital cluster, navigation, and infotainment windshield displays
- High resolution headlight

3 Description

The DLPC23x-Q1 digital micromirror display (DMD) controller for automotive applications is used in chipsets for interior applications such as HUD and exterior application such as high resolution headlight. The DLP5530-Q1 chipset includes a 0.55" DMD and the DLP4620-Q1 chipset includes a 0.46" DMD. Both chipsets also include the TPS99000-Q1 System Management and Illumination controller. The DLPC23x-Q1 integrates an embedded processor with error code correction (SECDED ECC), enabling host control and real-time feedback, on-chip diagnostics, and system monitoring functions. On-chip SRAM is included to remove the need for external DRAM. Combined with the TPS99000-Q1, the DLPC23x-Q1 supports high dynamic range dimming of over 5000:1 for HUD applications. Sub-LVDS 600-MHz DMD interface allows high DMD refresh rates to generate seamless and brilliant digital images, while simultaneously reducing radiated emissions.

To aid in the design and manufacture of automotive qualified projectors based on DLP technology, there are a number of established optical module manufacturers and design houses that can be leveraged to support your design.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)				
DLPC230-Q1	ZDQ (BGA, 324)	23.00 mm × 23.00 mm				
DLPC231-Q1	ZEK (nfBGA, 324)	15.00 mm × 15.00 mm				

(1) For all available packages, see the orderable addendum at the end of the data sheet.

DLP5530-Q1 or DLP4620-Q1 DLP[®] Chipset System Block Diagram

Table of Contents

1 Features1
2 Applications1
3 Description1
4 Revision History2
5 Pin Configuration and Functions
6 Specifications15
6.1 Absolute Maximum Ratings15
6.2 ESD Ratings15
6.3 Recommended Operating Conditions16
6.4 Thermal Information16
6.5 Electrical Characteristics17
6.6 Electrical Characteristics for Fixed Voltage I/O18
6.7 DMD High-Speed Sub-LVDS Electrical
Characteristics19
6.8 DMD Low-Speed Sub-LVDS Electrical
Characteristics20
6.9 OpenLDI LVDS Electrical Characteristics
6.10 Power Dissipation Characterisics
6.11 System Oscillators Timing Requirements
6.12 Power Supply and Reset Timing Requirements 22
6.13 Parallel Interface General Timing Requirements 23
6.14 OpenLDI Interface General Timing Requirements23
6.15 Parallel/OpenLDI Interface Frame Timing
Requirements25
6.16 Host/Diagnostic Port SPI Interface Timing
Requirements26
6.17 Host/Diagnostic Port I ² C Interface Timing
Requirements26

6.18 Flash Interface Timing Requirements	27
6.19 TPS99000-Q1 SPI Interface Timing	
Requirements	29
6.20 TPS99000-Q1 AD3 Interface Timing	
Requirements	31
6.21 Master I ² C Port Interface Timing Requirements .	32
6.22 Chipset Component Usage Specification	32
7 Parameter Measurement Information	33
7.1 HOST_IRQ Usage Model	33
7.2 Input Source	33
8 Detailed Description	35
8.1 Overview	35
8.2 Functional Block Diagram	35
8.3 Feature Description	36
8.4 Device Functional Modes	48
9 Application and Implementation	49
9.1 Application Information	49
9.2 Typical Application	49
9.3 Power Supply Recommendations	52
9.4 Layout	53
10 Device and Documentation Support	64
10.1 Device Support	64
10.2 Irademarks	65
10.3 Electrostatic Discharge Caution	65
10.4 Glossary	65
11 Mechanical, Packaging, and Orderable	
Information.	66
11.1 DLPC230-Q1 Mechanical Data	67

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	Changes from Revision F (June 2018) to Revision G (September 2023)							
•	Updated device name from DLP553x and DLP462x to DLP5530 and DLP4620. Removed Advance Information note							
•	Changed the DMD Pins assignment: DMD_HS1_WDATA4_P – DMD_HS1_WDATA7_N	3						
	Changes from Povision E (June 2018) to Povision E (August 2022)							

C	nanges from Revision E (June 2018) to Revision F (August 2023)	Page
•	Updated the data sheet title to DLPC23x - for DLPC230 and DLPC231 controllers	1
•	Updated the numbering format for tables, figures, and cross-references throughout the document	1
•	Added the new nfBGA package for DLPC231	1
•	Added the ZEK package diagram for DLPC231	3
•	Updated OpenLDI timing diagram to reflect actual bit assignments	23
•	Changed minimum compatible SPI size to 16Mb	41
•	Added PLL Filter and Crystal Layout for DLPC231	53

5 Pin Configuration and Functions

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
А	GND18A_ LVDS	DMD_HS1 _WDATA0 _N	DMD_HS1 _WDATA1 _N	DMD_HS1 _WDATA2 _N	DMD_HS1 _WDATA3 _N	DMD_HS1 _CLK_N	DMD_HS1 _WDATA4 _N	DMD_HS1 _WDATA5 _N	DMD_HS1 _WDATA6 _N	DMD_HS1 _WDATA7 _N	DMD_LS0 _WDATA_ N	DMD_LS0 _CLK_N	DMD_HS0 _WDATA7 _N	DMD_HS0 _WDATA6 _N	DMD_HS0 _WDATA5 _N	DMD_HS0 _WDATA4 _N	DMD_HS0 _CLK_N	DMD_HS0 _WDATA3 _N	DMD_HS0 _WDATA2 _N	DMD_HS0 _WDATA1 _N	DMD_HS0 _WDATA0 _N	GND18A_ LVDS
в	VCC18A_L VDS	DMD_HS1 _WDATA0 _P	DMD_HS1 _WDATA1 _P	DMD_HS1 _WDATA2 _P	DMD_HS1 _WDATA3 _P	DMD_HS1 _CLK_P	DMD_HS1 _WDATA4 _P	DMD_HS1 _WDATA5 _P	DMD_HS1 _WDATA6 _P	DMD_HS1 _WDATA7 _P	DMD_LS0 _WDATA_ P	DMD_LS0 _CLK_P	DMD_HS0 _WDATA7 _P	DMD_HS0 _WDATA6 _P	DMD_HS0 _WDATA5 _P	DMD_HS0 _WDATA4 _P	DMD_HS0 _CLK_P	DMD_HS0 _WDATA3 _P	DMD_HS0 _WDATA2 _P	DMD_HS0 _WDATA1 _P	DMD_HS0 _WDATA0 _P	VCC18A_L VDS
с	VCC18A_L VDS	GND18A_ LVDS	GND18A_ LVDS	GND18A_ LVDS	GND18A_ LVDS	GND18A_ LVDS	GND18A_ LVDS	DMD_LS1 _RDATA	DMD_LS0 _RDATA	DMD_LS0 _WDATA	DMD_LS0 _CLK	GND11AD _PLLD	GND11AD _PLLM	GNDIOLA _COSC	VCC3IO_C OSC	GND18A_ LVDS	GND18A_ LVDS	GND18A_ LVDS	GND18A_ LVDS	GND18A_ LVDS	GND18A_ LVDS	VCC18A_L VDS
D	PMIC_SPI _DOUT	VCC18A_L VDS	VCC18A_L VDS	VCC18A_L VDS	VCC18A_L VDS	RPI_1	VCC18A_L VDS	GND18A_ LVDS	RPI_LS	VCC18IO	DMD_DE N_ARSTZ	VCC11AD _PLLD	VCC11AD _PLLM	PLL_REFC LK_O	PLL_REFC LK_I	OSC_BYP ASS	RPI_0	VCC18A_L VDS	VCC18A_L VDS	VCC18A_L VDS	VCC18A_L VDS	GPIO_31
E	PMIC_SPI _CLK	PMIC_SPI _CSZ_0	PMIC_PA RKZ	VCC11A_ DDI_1															VCC11A_ DDI_0	VCC18A_L VDS	GPIO_30	GPIO_29
F	PMIC_SPI _DIN	PMIC_LED SEL_0	RESETZ	VCC11A_ DDI_1															VCC11A_ DDI_0	GPIO_28	GPIO_27	GPIO_26
G	PMIC_LED SEL_1	PMIC_LED SEL_2	PMIC_INT Z	VCCK															VCC3IO-2	JTAGTDO 3	JTAGTMS 1	JTAGTCK
н	PMIC_LED SEL_3	PMIC_AD 3_CLK	HWTEST_ EN	VCC3IO_ MVGP															VCCK	JTAGTDO 2	VSYNC	HSYNC
J	PMIC_AD 3 MOSI	PMIC_AD 3 MISO	GPIO_00	VCC3IO					GND	GND	VCCK	GND	GND	GND					VCCK	JTAGTDO 1	PDATA_2 3	PDATA_2 2
к	GPIO_01	GPIO_02	GPIO_03	VCC3IO					GND	GND	GND	GND	GND	GND					VCC3IO_I NTF	JTAGTDI	PDATA_2 1	PDATA_2 0
L	GPIO_04	GPIO_05	GPIO_06	VCCK					GND	GND	GND	GND	GND	GND					VCC3IO_I NTF	JTAGTRST Z	PDATA_1 9	PDATA_1 8
м	GPIO_07	GPIO_08	GPIO_09	VCC3IO					GND	GND	GND	GND	GND	GND					VCC3IO_I NTF	JTAGTMS 3	PDATA_1 7	PDATA_1 6
N	GPIO_10	GPIO_11	GPIO_12	VCC3IO					GND	GND	GND	GND	GND	GND					VCCK	JTAGTMS 2	PDATA_1 4	PDATA_1 5
Р	GPIO_13	GPIO_14	GPIO_15	VCC3IO					GND	GND	GND	GND	GND	GND					VCCK	HOST_IIC SDA	DATEN	PDATA_1 3
R	GPIO_16	GPIO_17	GPIO_18	HOST_IF_ SEL															VCC3IO_I NTF	HOST_IIC SCL	PDATA_1 1	PCLK
т	GPIO_19	GPIO_20	GPIO_21	VCCK															VCC3IO_I NTF	HOST_IR	PDATA_9	PDATA_1
U	GPIO_22	GPIO_23	GPIO_24	VCCK															VCCK	HOST_SPI	PDATA_7	PDATA_1 0
v	HOST_SPI	FLSH_SPI_ DIO_0	GPIO_25	VCC3IO_F															VCCK	HOST_SPI	PDATA_5	PDATA_8
w	FLSH_SPI_ CLK	FLSH_SPI_ DIO_1	FLSH_SPI_ DIO_3	VCC3IO	VCC3IO	VCCK	EFUSE_VD DO	VCCK	VCC33A_L VDS	VCCK	VCC11A_L VDS.	VCC11A_L VDS.	VCC33A_L VDS	GND33A_ LVDS	VCC33A_L VDS	VCCK	VCC11A_L VDS	VCC11A_L VDS.	VCC33A_L VDS	HOST_SPI CSZ	PDATA_3	PDATA_6
Y	FLSH_SPI_ CSZ	FLSH_SPI_ DIO_2	GND	TSTPT_0	TSTPT_2	TSTPT_4	TSTPT_6	EFUSE_PO B33	VCC33A_L VDS	GND11A_	GND11A_	GND11A_	VCC33A_L VDS	GND33A_	VCC33A_L VDS	GND11A_	GND11A_	GND11A_	VCC33A_L VDS	HOST_SPI	PDATA_2	PDATA_4
AA	GND	GND	RTPPUB_	TSTPT_1	TSTPT_3	TSTPT_5	TSTPT_7	GND33A_	L1_DATA0	L1_DATA1	L1_CLK_N	L1_DATA2	L1_DATA3	GND33A_	L2_DATA0	L2_DATA1	L2_CLK_N	L2_DATA2	L2_DATA3	GND33A_	PDATA_0	PDATA_1
AB	GND	GND	CRCZ_CH	MSTR_SC	MSTR_SD A	ETM_TRA CECLK	ETM_TRA CECTL	GND33A_ LVDS	L1_DATA0	L1_DATA1	L1_CLK_P	L1_DATA2	L1_DATA3	GND33A_ LVDS	L2_DATA0 P	L2_DATA1	L2_CLK_P	L2_DATA2 P	L2_DATA3	GND33A_ LVDS	GND33A_ LVDS	GND

Note that there is one VCCK power ball located in the thermal ball array.

Figure 5-1. DLPC230 ZDQ Package 324-Pin BGA Top View

DLPC230-Q1, DLPC231-Q1 DLPS054G – DECEMBER 2015 – REVISED SEPTEMBER 2023

	А	в	С	D	Е	F	G	н	J	к	L	М	N	Ρ	R	т	U	V	
18	GND18A _LVDS	VCC18A_ LVDS	DMD_HS 0_WDAT A1_N	DMD_HS 0_WDAT A0_N	GPIO_28	JTAGTD O2	JTAGTM S3	HSYNC	VSYNC	PDATA_ 17	PDATA_ 14	PCLK	PDATA_ 9	PDATA_ 8	PDATA_ 6	PDATA_ 4	PDATA_ 2	GND	18
17	DMD_HS 0_WDAT A2_N	DMD_HS 0_WDAT A2_P	DMD_HS 0_WDAT A1_P	DMD_HS 0_WDAT A0_P	GPIO_29	JTAGTD O3	JTAGTDI	JTAGTCK	PDATA_ 21	PDATA_ 18	PDATA_ 15	DATEN	PDATA_ 12	PDATA_ 7	PDATA_ 5	PDATA_ 3	PDATA_ 1	PDATA_ 0	17
16	DMD_HS 0_WDAT A3_N	DMD_HS 0_WDAT A3_P	GND18A _LVDS	VCC18A_ LVDS	GPIO_30	GPIO_26	JTAGTRS TZ	JTAGTM S1	PDATA_ 22	PDATA_ 19	PDATA_ 16	PDATA_ 13	PDATA_ 11	PDATA_ 10	HOST_SP I_DIN	HOST_SP I_CSZ	HOST_SP I_CLK	VCC33A_ LVDS	16
15	DMD_HS 0_CLK_N	DMD_HS 0_CLK_P	VCC18A_ LVDS	RPI_0	GPIO_31	GPIO_27	JTAGTD O1	JTAGTM S2	PDATA_ 23	PDATA_ 20	HOST_II C_SDA	HOST_II C_SCL	HOST_IR Q	HOST_SP	VCC33A_ LVDS	GND33A _LVDS	GND33A _LVDS	GND33A _LVDS	15
14	DMD_HS 0_WDAT A4_N	DMD_HS 0_WDAT A4_P	GND18A _LVDS	VCC18A_ LVDS	GND18A _LVDS	VCC3IO- 2	VCC3IO- 2	VCC3IO_ INTF	VCC3IO_ INTF	GND	VCC3IO_ INTF	VCC3IO_ INTF	GND	VCC11A_ LVDS	GND33A _LVDS	VCC33A_ LVDS	L2_DATA 3_N	L2_DATA 3_P	14
13	DMD_HS 0_WDAT A5_N	DMD_HS 0_WDAT A5_P	OSC_BYP ASS	PLL_REF CLK_O	VCC18A_ LVDS	VCC11A_ DDI_0	VCC11A_ DDI_0	VCCK	GND	VCCK	GND	VCCK	GND	VCC11A_ LVDS	VCC33A_ LVDS	GND33A _LVDS	L2_DATA 2_N	l2_data 2_p	13
12	DMD_HS 0_WDAT A6_N	DMD_HS 0_WDAT A6_P		PLL_REF CLK_I	GND18A _LVDS	VCC18A_ LVDS	GND	GND	GND	GND	GND	GND	GND	VCC11A_ LVDS	GND33A _LVDS	VCC33A_ LVDS	L2_CLK_ N	L2_CLK_ P	12
11	DMD_HS 0_WDAT A7_N	DMD_HS 0_WDAT A7_P	GND11A D_PLLM	VCC11A D_PLLM	VCC3IO_ COSC	VCCK	GND	GND	GND	GND	GND	GND	VCCK	VCC11A_ LVDS	VCC33A_ LVDS	GND33A _LVDS	L2_DATA 1_N	L2_DATA 1_P	11
10	DMD_LS 0_CLK_N	DMD_LS 0_CLK_P	VCC11A D_PLLD	GND11A D_PLLD	GND18A _LVDS	VCC18A_ LVDS	GND	GND	GND	GND	GND	GND	VCC11A_ LVDS	EFUSE_P OR33	ETM_TR ACECLK	VCC33A_ LVDS	L2_DATA 0_N	L2_DATA 0_P	10
9	DMD_LS 0_WDAT A_N	DMD_LS 0_WDAT A_P	DMD_LS 0_CLK	DMD_DE N_ARSTZ	VCC18IO	VCCK	GND	GND	GND	GND	GND	GND	VCCK	EFUSE_V DDQ	ETM_TR ACECTL	GND33A _LVDS	GND33A _LVDS	GND33A _LVDS	9
8	DMD_HS 1_WDAT A7_N	DMD_HS 1_WDAT A7_P	DMD_LS 1_RDAT A	DMD_LS 0_WDAT A	GND18A _LVDS	VCC18A_ LVDS	GND	GND	GND	GND	GND	GND	VCCK	VCC3IO	TSTPT_5	VCC33A_ LVDS	L1_DATA 3_N	L1_DATA 3_P	8
7	DMD_HS 1_WDAT A6_N	DMD_HS 1_WDAT A6_P	DMD_LS 0_RDAT A	RPI_LS	VCC11A_ DDI_1	VCC18A_ LVDS	GND	GND	GND	GND	GND	GND	VCC3IO	TSTPT_7	TSTPT_3	MSTR_S DA	L1_DATA 2_N	L1_DATA 2_P	7
6	DMD_HS 1_WDAT A5_N	DMD_HS 1_WDAT A5_P	VCC18A_ LVDS	GND18A _LVDS	VCC11A_ DDI_1	GND18A _LVDS	VCCK	GND	VCCK	VCC3IO	VCCK	VCC3IO	VCCK	TSTPT_6	MSTR_S CL	GND33A _LVDS	L1_CLK_ N	L1_CLK_ P	6
5	DMD_HS 1_WDAT A4_N	DMD_HS 1_WDAT A4_P	GND18A _LVDS	VCC18A_ LVDS	PMIC_SP I_DOUT	PMIC_SP I_CLK	VCC3IO_ MVGP	VCC3IO_ MVGP	HWTEST _EN	GPIO_12	VCC3IO	GPIO_24	VCC3IO_ FLSH	VCC3IO_ FLSH	TSTPT_2	GND33A _LVDS	L1_DATA 1_N	L1_DATA 1_P	5
4	DMD_HS 1_CLK_N	DMD_HS 1_CLK_P	VCC18A_ LVDS	RPI_1	PMIC_PA RKZ	PMIC_LE DSEL_0	PMIC_SP I_CSZ_0	GPIO_00	GPIO_07	GPIO_11	GPIO_16	GPIO_20	GPIO_23	TSTPT_4	TSTPT_1	VCC33A_ LVDS	L1_DATA 0_N	L1_DATA 0_P	4
3	DMD_HS 1_WDAT A3_N	DMD_HS 1_WDAT A3_P	GND18A _LVDS	VCC18A_ LVDS	PMIC_SP I_DIN	RESETZ	PMIC_A D3_MOS I	GPIO_04	GPIO_06	GPIO_10	GPIO_15	GPIO_19	GPIO_22	GPIO_25	TSTPT_0	VCC33A_ LVDS	GND33A _LVDS	GND33A _LVDS	3
2	DMD_HS 1_WDAT A2_N	DMD_HS 1_WDAT A2_P	DMD_HS 1_WDAT A1_P	DMD_HS 1_WDAT A0_P	PMIC_IN TZ	PMIC_LE DSEL_2	PMIC_A D3_MIS O	GPIO_05	GPIO_03	GPIO_09	GPIO_14	GPIO_18	GPIO_21	HOST_SP	FLSH_SPI _DIO_1	FLSH_SPI _DIO_3	RTPPUB_ ENZ	CRCZ_CH KSM_SEL	2
1	GND18A _LVDS	VCC18A_ LVDS	DMD_HS 1_WDAT A1_N	DMD_HS 1_WDAT A0_N	PMIC_LE DSEL_1	PMIC_LE DSEL_3	PMIC_A D3_CLK	GPIO_02	GPIO_01	GPIO_08	GPIO_13	GPIO_17	HOST_IF _SEL	FLSH_SPI _DIO_0	FLSH_SPI _DIO_2	FLSH_SPI _CSZ	FLSH_SPI _CLK	GND	1
	А	в	с	D	E	F	G	Н	J	к	L	М	N	Р	R	т	Ū	V	

Figure 5-2. DLPC231 ZEK Package 324-Pin BGA Top View

Table 5-1. Pin Functions – Board Level Test, Debug, and Initialization

	PIN			DESCRIPTION				
NAME	ZDQ324	ZEK324						
RESETZ	F3	F3	I ₇	Active low power-on reset for the DLPC23x-Q1. A low-to-high transition starts self-configuration and initialization of the ASIC. ('0' = Reset, '1' = Normal Operation) All ASIC power and input clocks must be stable before this reset is deasserted high. The signals listed below must be forced low by external pulldown, and will then be driven low as the power supplies stabilize with RESETZ asserted. <i>PMIC_LEDSEL_0, PMIC_LEDSEL_1, PMIC_LEDSEL_2, PMIC_LEDSEL_3, DMD_DEN_ARSTZ, PMIC_AD3_CLK, and PMIC_AD3_MOSI</i> All other bi-directional and output signals will be tristated while reset is asserted. External pullups or pulldowns must be added where necessary to protect external devices that can typically be driven by the ASIC to prevent device malfunction. This pin includes hysteresis. Specific timing requirements for this signal are shown in Section 6.12.				
PMIC_PARKZ	E3	E4	I ₇	DMD Park Control ('0' = Park, '1' = Un-Park) The TI TPS99000-Q1 device is used to control this signal. As part of this function, it monitors power to the DLPC23x-Q1 watching for an imminent power loss condition, upon which it will drive the PMIC_PARKZ signal accordingly. The specific timing requirements for this signal are shown in Section 6.12.				
HOST_IF_SEL	R4	N1	B _{13,14}	Selects which input interface port will be used for Host Command and Control. The port that is not selected as the Host Command and Control port will be available as a Diagnostic Processor monitoring port. ('0' = Host SPI, '1' = Host I ² C) This pin includes a weak internal pulldown. If a pull-up is used to obtain a '1' value, the pull-up value must be $\leq 8 \text{ k}\Omega$. Tristated while RESETZ is asserted low, and is sampled as a host directive approximately 1.5 µs after RESETZ is deasserted. It can be driven as an output for TI debug use after sampling.				
HOST_SPI_MODE	V1	P2	B _{13,14}	Selects the SPI mode (clock phase and polarity) that will be used with the HOST SPI interface. This value is applicable regardless of whether the Host SPI interface is used for Host Command and Control, or for the Diagnostic Processor monitoring port. ('0' = SPI Mode 0 or 3, '1' = SPI Mode 1 or 2) This pin includes a weak internal pulldown. If a pullup is used to obtain a '1' value, the pullup value must be $\leq 8 \text{ k}\Omega$. Tristated while RESETZ is asserted low, and is sampled as a host directive approximately 1.5 µs after RESETZ is deasserted. It can be driven as an output for TI debug use after sampling.				
RTPPUB_ENZ	AA3	U2	B _{13,14}	TI internal use. Must be left unconnected. Includes a weak pulldown.				
CRCZ_CHKSUM_S EL	AB3	V2	B _{13,14}	Selects whether the Host will use 8-bit CRC or checksum on the Host Command and Control interface. This value is only applicable for the Host Command and Control interface. The value for the Diagnostic Processor monitoring port will be specified in Flash. ('0' = 8-bit CRC, '1' = 8-bit checksum) This pin includes a weak internal pulldown. If a pullup is used to obtain a '1' value, the pullup value must be $\leq 8 \ k\Omega$. Tristated while RESETZ is asserted low, and is sampled as a host directive approximately 1.5 µs after RESETZ is deasserted. It can be driven as an output for TI debug use after sampling.				
ETM_TRACECLK	AB6	R10	O ₁₃	TI internal use. Must be left unconnected (clock for Trace Debug)				
ETM_TRACECTL	AB7	R9	O ₁₃	TI internal use. Must be left unconnected (control for Trace Debug)				

Table 5-1. Pin Functions – Board Level Test, Debug, and Initialization (continued)

	PIN			DESCRIPTION				
NAME	ZDQ324	ZEK324	1/0(**					
TSTPT_0	Y4	R3	B _{13,14}	Test pin 0 / STAY-IN-BOOT: Selects whether the system must stay in the Boot Application, or proceed with the normal load of the Main Application. ('0' = Load Main Application, '1' = Stay in Boot Application) This pin includes a weak internal pulldown. If a pullup is being used to obtain a '1' value, the pullup value must be $\leq 8 \ R\Omega$. Tristated while RESETZ is asserted low, and is sampled as a host directive approximately 1.5 µs after RESETZ is deasserted. It can be driven as an output for debug use after sampling as described in Section 8.3.11.				
TSTPT_1	AA4	R4	B _{13,14}	Test pin 1 : This pin must be externally pulled down, left open or unconnected. Includes a weak pulldown. It can be driven as an output for debug use as described in Section 8.3.11.				
TSTPT_2	Y5	R5	B _{13,14}	Test pin 2 : This pin must be externally pulled down, left open or unconnected. Includes a weak pulldown. It can be driven as an output for debug use as described in Section 8.3.11.				
TSTPT_3	AA5	R7	B _{13,14}	Test pin 3 : This pin must be externally pulled down, left open or unconnected. Includes a weak pulldown. It can be driven as an output for debug use as described in Section 8.3.11.				
TSTPT_4	Y6	P4	B _{13,14}	Test pin 4: This pin must be externally pulled down, left open or unconnected. Includes a weak pulldown. It can be driven as an output for debug use as described in Section 8.3.11.				
TSTPT_5	AA6	R8	B _{13,14}	Test pin 5 / Spread Spectrum Disable: Selects whether spread spectrum flash settings are used or whether spread spectrum clocking will be disabled. ('0' = Spread Spectrum Disabled, '1' = Use flash Spread Spectrum settings) This pin includes a weak internal pulldown. If a pull-up is being used to obtain a '1' value, the pull-up value must be $\leq 8 \ k\Omega$. This signal is tristated while RESETZ is asserted low, and is sampled as a host directive approximately 1.5 µs after RESETZ is deasserted. It can be driven as an output for debug use after sampling as described in Section 8.3.11.				
TSTPT_6	Y7	P6	B _{13,14}	Test pin 6: An external pull-up resistor must be used ($\leq 8 \ k\Omega$ because pin includes a weak pull-down). This signal is tristated while RESETZ is asserted low, and is sampled as a host directive approximately 1.5 µs after RESETZ is deasserted. It can be driven as an output for debug use after sampling as described in Section 8.3.11.				
TSTPT_7	AA7	P7	B _{13,14}	Test pin 7: This pin must be externally pulled down, left open or unconnected. Includes a weak pull-down. It can be driven as an output for debug use as described in Section 8.3.11.				
HWTEST_EN	НЗ	J5	I ₁₄	Manufacturing test enable signal. This signal must be connected directly to ground on the PCB. Includes weak internal pull-down and hysteresis.				
JTAGTCK	G22	H17	I ₁₁	JTAG Serial Data Clock Includes a weak internal pull-up.				

Table 5-1. Pin Functions – Board Level Test, Debug, and Initialization (continued)

	PIN		UO(1)	DESCRIPTION		
NAME	ZDQ324	ZEK324	1/0(1/	DESCRIPTION		
JTAGTMS1	G21	H16	I ₁₁	JTAG Test Mode Select Includes weak internal pull-up.		
JTAGTRSTZ	L20	G16	I ₁₁	JTAG Reset Includes a weak internal pull-up and Hysteresis. For normal operation, this pin must be pulled to ground through an external 8 k Ω or less resistor. Failure to pull this pin low during normal operation will cause start-up and initialization problems. For JTAG Boundary Scan, this pin must be pulled-up or left disconnected.		
JTAGTDI	K20	G17	I ₁₁	JTAG Serial Data In Includes a weak internal pull-up.		
JTAGTDO1	J20	G15	B _{10,11}	JTAG Serial Data Out Includes weak internal pull-up.		
JTAGTDO2	H20	F18	B _{10,11}	This pin must be left open or unconnected. Includes a weak internal pull-up.		
JTAGTDO3	G20	F17	B _{10,11}	This pin must be left open or unconnected. Includes a weak internal pull-up.		
JTAGTMS2	N20	H15	I ₁₁	This pin must be left open or unconnected. Includes a weak internal pull-up. See Section 8.3.11 for important debug access considerations.		
JTAGTMS3	M20	G18	I ₁₁	This pin must be left open or unconnected. Includes a weak internal pull-up. See Section 8.3.11 for important debug access considerations.		

(1) See Table 5-10 for more information on I/O definitions.

Table 5-2. Pin Functions – Parallel Port Input Data and Control

	PIN ⁽¹⁾		UO(2)	DESCRIPTION		
NAME	ZDQ324	ZEK324	1/0\2/	PARALLEL RGB MODE		
PCLK	R22	M18	I ₁₁	Pixel clock		
VSYNC	H21	J18	I ₁₁	Vsync ⁽³⁾		
HSYNC	H22	H18	I ₁₁	Hsync ⁽³⁾		
DATEN	P21	M17	I ₁₁	Data Valid		
				(TYPICAL RGB 888)		
PDATA_0 PDATA_1 PDATA_2 PDATA_3 PDATA_4 PDATA_5 PDATA_6 PDATA_7	AA21 AA22 Y21 W21 Y22 V21 W22 U21	V17 U17 U18 T17 T18 R17 R18 P17	I ₁₁	Blue (bit weight 1) Blue (bit weight 2) Blue (bit weight 4) Blue (bit weight 8) Blue (bit weight 16) Blue (bit weight 32) Blue (bit weight 64) Blue (bit weight 128)		
				(TYPICAL RGB 888)		
PDATA_8 PDATA_9 PDATA_10 PDATA_11 PDATA_12 PDATA_13 PDATA_14 PDATA_15	V22 T21 U22 R21 T22 P22 N21 N22	P18 N18 P16 N16 N17 M16 L18 L17	I ₁₁	Green (bit weight 1) Green (bit weight 2) Green (bit weight 4) Green (bit weight 8) Green (bit weight 16) Green (bit weight 32) Green (bit weight 64) Green (bit weight 128)		
				(TYPICAL RGB 888)		

Table 5-2. Pin Functions – Parallel Port Input Data and Control (continued)

	PIN ⁽¹⁾		I/O ⁽²⁾	DESCRIPTION		
NAME	ZDQ324	ZEK324	1/0(-/	PARALLEL RGB MODE		
PDATA_16	M22	L16		Red (bit weight 1)		
PDATA_17	M21	K18		Red (bit weight 2)		
PDATA_18	L22	K17		Red (bit weight 4)		
PDATA_19	L21	K16		Red (bit weight 8)		
PDATA_20	K22	K15	I 11	Red (bit weight 16)		
PDATA_21	K21	J17		Red (bit weight 32)		
PDATA_22	J22	J16		Red (bit weight 64)		
PDATA_23	J21	J15		Red (bit weight 128)		

(1) Unused inputs must be grounded or pulled down to ground through an external resistor ($\leq 10 \text{ k}\Omega$).

(2) See Table 5-10 for more information on I/O definitions.

(3) VSYNC and HSYNC polarity are software programmable.

Table 5-3. Pin Functions – OpenLDI Ports Input Data and Control

PIN ⁽¹⁾ ⁽²⁾		u(Q(3))					
NAME	ZDQ324	ZEK325		DESCRIPTION			
L1_CLK_P L1_CLK_N	AB11 AA11	V6 U6	I ₁₈	OpenLDI (FPD Link I) Port 1 Clock Lane			
L1_DATA0_P L1_DATA0_N L1_DATA1_P L1_DATA1_N L1_DATA2_P L1_DATA2_N L1_DATA3_P L1_DATA3_N	AB9 AA9 AB10 AA10 AB12 AA12 AB13 AA13	V4 U4 V5 U5 V7 U7 V8 U8	I ₁₈	penLDI (FPD Link I) Port 1 Data Lanes: Intra-port data lane swapping can e done on a product configuration basis to support board considerations.			
L2_CLK_P L2_CLK_N	AB17 AA17	V12 U12	I ₁₈	OpenLDI (FPD Link I) Port 2 Clock Lane			
L2_DATA0_P L2_DATA0_N L2_DATA1_P L2_DATA1_N L2_DATA2_P L2_DATA2_N L2_DATA2_N L2_DATA3_P L2_DATA3_N	AB15 AA15 AB16 AA16 AB18 AA18 AB19 AA19	V10 U10 V11 U11 V13 U13 V14 U14	I ₁₈	OpenLDI (FPD Link I) Port 2 Data Lanes: Intra-port data lane swapping ca be done on a product configuration basis to support board considerations.			

(1) The system only supports the operational use of one port. As two ports are available, the host can select which port they wish to be active (to optimize board routing as an example).

(2) The inputs for any un-used ports must be left unconnected, and will be powered down by the system.

(3) See Table 5-10 for more information on I/O definitions.

Table 5-4. Pin Functions – DMD Reset and Bias Control Interfaces

PIN ⁽¹⁾ ⁽²⁾		UO (3)	DECODIDION		
NAME	ZDQ324	ZEK324		DESCRIPTION	
DMD_DEN_ARSTZ	D11	D9	0 ₁	DMD driver enable signal ('1' = Enabled, '0' = Reset) This signal will be driven low after the DMD is parked and before power is removed from the DMD. If the 1.8-V power to the DLPC230-Q1 is independent of the 1.8-V power to the DMD, then an external pulldown resistor ($\leq 2.2 \text{ k}\Omega$) must be used to hold the signal low in the event DLPC230-Q1 power is inactive while DMD power is applied.	
DMD_LS0_CLK	C11	C9	O ₂	TI internal use. Must be left unconnected.	
DMD_LS0_WDATA	C10	D8	O ₂	TI internal use. Must be left unconnected.	
DMD_LS0_RDATA	C9	C7	I ₃	DMD, low-speed single-ended serial read data	
DMD_LS1_RDATA	C8	C8	I ₃	DMD, low-speed single-ended serial read data (Training data response for second port of DMD)	

Table 5-4. Pin Functions – DMD Reset and Bias Control Interfaces (continued)

PIN ⁽¹⁾ ⁽²⁾			UO (3)	DESCRIPTION	
NAME	ZDQ324	ZEK324	1/0(*)	DESCRIPTION	
DMD_LS0_CLK_P DMD_LS0_CLK_N	B12 A12	B10 A10	O ₄	DMD low-speed differential interface clock	
DMD_LS0_WDATA_P DMD_LS0_WDATA_N	B11 A11	B9 A9	O ₄	DMD low-speed differential interface write data	

(1) The low-speed write control interface to the DMD is differential.

(2) All control interface reads will make use of the single-ended low-speed signals. The read data will be clocked by the write clock .

(3) See Table 5-10 for more information on I/O definitions.

Table 5-5. Pin Functions – DMD Sub-LVDS Interfaces

PIN						
NAME	ZDQ324	ZEK324		DESCRIPTION		
DMD_HS0_CLK_P DMD_HS0_CLK_N	B17 A17	B15 A15	O ₄	DMD high-speed interface, Port 0 Clock Lane.		
DMD_HS0_WDATA0_P DMD_HS0_WDATA0_N DMD_HS0_WDATA1_P DMD_HS0_WDATA1_N DMD_HS0_WDATA2_P DMD_HS0_WDATA2_N DMD_HS0_WDATA3_P DMD_HS0_WDATA3_N DMD_HS0_WDATA4_P DMD_HS0_WDATA4_P DMD_HS0_WDATA5_P DMD_HS0_WDATA5_N DMD_HS0_WDATA5_N DMD_HS0_WDATA6_P DMD_HS0_WDATA6_N DMD_HS0_WDATA7_P DMD_HS0_WDATA7_N	B21 A21 B20 A19 A19 B18 A18 B16 A16 B15 A15 B14 A14 B13 A13	D17 D18 C17 C18 B17 A17 B16 A16 B14 A14 B13 A13 B12 A12 B11 A11	O ₄	DMD high-speed interface, Port 0 Data Lanes: The true numbering and application of the DMD_HS_DATA pins are software configuration dependent as discussed in <i>Section 8.3.3</i> .		
DMD_HS1_CLK_P DMD_HS1_CLK_N	B6 A6	B4 A4	O ₄	DMD high-speed interface, Port 1 Clock Lane.		
DMD_HS1_WDATA0_P DMD_HS1_WDATA0_N DMD_HS1_WDATA1_P DMD_HS1_WDATA1_P DMD_HS1_WDATA2_P DMD_HS1_WDATA2_P DMD_HS1_WDATA3_P DMD_HS1_WDATA3_N DMD_HS1_WDATA4_P DMD_HS1_WDATA4_N DMD_HS1_WDATA5_P DMD_HS1_WDATA5_N DMD_HS1_WDATA6_P DMD_HS1_WDATA6_N DMD_HS1_WDATA7_P DMD_HS1_WDATA7_N	B2 A2 B3 A3 B4 A4 B5 A5 B7 A7 B8 A8 B9 A9 B10 A10	D2 D1 C2 C1 B2 A2 B3 A3 B5 A5 B6 A6 B7 A7 B8 A8	O ₄	DMD high-speed interface, Port 1 Data Lanes: The true numbering and application of the DMD_HS_DATA pins are software configuration dependent as discussed in <i>Section 8.3.3</i> .		

(1) See Table 5-10 for more information on I/O definitions.

Table 5-6. Pin Functions – Peripheral Interfaces

PIN		UO(1)	DESCRIPTION		
NAME	ZDQ324	ZEK324	1/0(**	DESCRIPTION	
HOST_IRQ ⁽²⁾	T20	N15	O ₁₀	Host interrupt (output active HIGH) This signal is used to indicate that the DLPC23x-Q1 has detected a serious error for which the ASIC has initiated an Emergency Shutdown. This is discussed further in Section 7.1. The DLPC23x-Q1 tristates this output during reset. An external pulldown ($\leq 10 \text{ k}\Omega$) is required to drive this signal to its inactive state.	
HOST_IIC_SCL	R20	M15	B ₁₂	I ² C Port (Slave), Host Command and Control to ASIC, SCL (bidirectional, open- drain): An external pullup is required.	
HOST_IIC_SDA	P20	L15	B ₁₂	I ² C Port (Slave), Host Command and Control to ASIC, SDA. (bidirectional, open- drain): An external pullup is required.	
HOST_SPI_CLK	Y20	U16	I ₁₁	SPI Port (Slave), Host Command and Control to ASIC, clock	
HOST_SPI_CSZ	W20	T16	I ₁₁	SPI Port (Slave), Host Command and Control to ASIC, chip select (active low input) An external pullup resistor ($\leq 2.2 \text{ k}\Omega$) is required to avoid a floating chip select input to the ASIC	
HOST_SPI_DIN	V20	R16	I ₁₁	SPI Port (Slave), Host Command and Control to ASIC, receive data in	
HOST_SPI_DOU T	U20	P15	O ₁₀	SPI Port (Slave), Host Command and Control to ASIC, transmit data out	
FLSH_SPI_CSZ	Y1	T1	O ₈	SPI Port (Master), Control Interface to Flash device, chip select (active low output) An external pullup resistor ($\leq 10 \text{ k}\Omega$) is required to avoid a floating chip select input to the Flash	
FLSH_SPI_CLK	W1	U1	O ₈	SPI Port (Master), Control Interface to Flash device, clock	
FLSH_SPI_DIO_ 0	V2	P1	B _{8,9}	SPI Port (Master), Control Interface to Flash device, transmit and receive data An external pullup resistor ($\leq 10 \text{ k}\Omega$) is required	
FLSH_SPI_DIO_ 1	W2	R2	B _{8,9}	SPI Port (Master), Control Interface to Flash device, transmit and receive data An external pullup resistor (\leq 10 k Ω) is required	
FLSH_SPI_DIO_ 2	Y2	R1	B _{8,9}	SPI Port (Master), Control Interface to Flash device, transmit and receive data An external pullup resistor ($\leq 3.3 \text{ k}\Omega$) is required	
FLSH_SPI_DIO_ 3	W3	T2	B _{8,9}	SPI Port (Master), Control Interface to Flash device, transmit and receive data An external pullup resistor ($\leq 3.3 \text{ k}\Omega$) is required	
PMIC_INTZ ⁽²⁾	G3	E2	I ₇	TPS99000-Q1 interrupt (input with hysteresis) The ASIC provides a weak internal pullup,	
PMIC_SPI_CLK	E1	F5	0 ₆	SPI Port (Master), General Control Interface to TPS99000-Q1, clock	
PMIC_SPI_CSZ0	E2	G4	O ₆	SPI Port (Master), General Control Interface to TPS99000-Q1, chip select 0 (active low output) An external pullup resistor ($\leq 10 \text{ k}\Omega$) must be used to avoid floating chip select inputs to the external SPI device during ASIC reset assertion.	
PMIC_SPI_DIN	F1	E3	I ₇	SPI Port (Master), General Control Interface to TPS99000-Q1, receive data in	
PMIC_SPI_DOUT	D1	E5	O ₆	SPI Port (Master), General Control Interface to TPS99000-Q1, transmit data out	
PMIC_AD3_CLK	H2	G1	O ₂₀	Sequencer Clock / TPS99000-Q1 primary system clock An external pulldown resistor ($\leq 10 \text{ k}\Omega$) must be used to avoid uncontrolled behavior during ASIC reset assertion.	
PMIC_AD3_MISO	J2	G2	I ₁₄	Measurement control interface to TPS99000-Q1, receive data in	
PMIC_AD3_MOSI	J1	G3	O ₂₀	Measurement control interface to TPS99000-Q1, transmit data out An external pulldown resistor ($\leq 10 \text{ k}\Omega$) must be used to avoid uncontrolled behavior during ASIC reset assertion.	
PMIC_LEDSEL_0	F2	F4	O ₆	LED Control Interface to TPS99000-Q1 An external pulldown resistor ($\leq 10 \text{ k}\Omega$) must be used to avoid uncontrolled illumination during ASIC reset assertion.	
PMIC_LEDSEL_1	G1	E1	0 ₆	LED Control Interface to TPS99000-Q1 An external pulldown resistor ($\leq 10 \text{ k}\Omega$) must be used to avoid uncontrolled illumination during ASIC reset assertion.	

Table 5-6. Pin Functions – Peripheral Interfaces (continued)

PIN		UO(1)	DECODIDION		
NAME	ZDQ324	ZEK324		DESCRIPTION	
PMIC_LEDSEL_2	G2	F2	O ₆	LED Control Interface to TPS99000-Q1 An external pulldown resistor ($\leq 10 \text{ k}\Omega$) must be used to avoid uncontrolled illumination during ASIC reset assertion.	
PMIC_LEDSEL_3	H1	F1	O ₆	LED Control Interface to TPS99000-Q1 An external pulldown resistor (≤ 10 kΩ) must be used to avoid uncontrolled illumination during ASIC reset assertion.	
MSTR_SDA	AB5	Τ7	B ₁₅	I ² C Port (Master), SDA. (bidirectional, open-drain) An external pullup is required. Typical use of the Master I ² C port is communication with temperature sensing devices and an optional EEPROM. The Master I ² C I/Os are powered by VCC3IO (3.3 V only).	
MSTR_SCL	AB4	R6	B ₁₅	I ² C Port (Master), SCL. (bidirectional, open-drain) An external pullup is required. Typical use of the Master I ² C port is communication with temperature sensing devices and an optional EEPROM. The Master I ² C I/Os are powered by VCC3IO (3.3 V only).	

(1) See Table 5-10 for more information on I/O definitions.

(2) For more information about usage, see Section 7.1.

Table 5-7. Pin Functions – GPIO Peripheral Interface

PIN ^{(1) (3)}		uo(2)	DECODIDITION		
NAME	ZDQ324	ZEK324	1/0(2)	DESCRIPTION	
GPIO_31	D22	E15	B _{20,14}	General purpose I/O 31	
GPIO_30	E21	E16	B _{20,14}	General purpose I/O 30	
GPIO_29	E22	E17	B _{20,14}	General purpose I/O 29	
GPIO_28	F20	E18	B _{20,14}	General purpose I/O 28	
GPIO_27	F21	F15	B _{20,14}	General purpose I/O 27	
GPIO_26	F22	F16	B _{20,14}	General purpose I/O 26	
GPIO_25	V3	P3	B _{20,14}	General purpose I/O 25	
GPIO_24	U3	M5	B _{20,14}	General purpose I/O 24	
GPIO_23	U2	N4	B _{20,14}	General purpose I/O 23	
GPIO_22	U1	N3	B _{20,14}	General purpose I/O 22	
GPIO_21	Т3	N2	B _{20,14}	General purpose I/O 21	
GPIO_20	T2	M4	B _{20,14}	General purpose I/O 20	
GPIO_19	T1	M3	B _{20,14}	General purpose I/O 19	
GPIO_18	R3	M2	B _{20,14}	General purpose I/O 18	
GPIO_17	R2	M1	B _{20,14}	General purpose I/O 17	
GPIO_16	R1	L4	B _{20,14}	General purpose I/O 16	
GPIO_15	P3	L3	B _{20,14}	General purpose I/O 15	
GPIO_14	P2	L2	B _{20,14}	General purpose I/O 14	
GPIO_13	P1	L1	B _{20,14}	General purpose I/O 13	
GPIO_12	N3	K5	B _{20,14}	General purpose I/O 12	
GPIO_11	N2	K4	B _{20,14}	General purpose I/O 11	
GPIO_10	N1	К3	B _{20,14}	General purpose I/O 10	
GPIO_09	M3	К2	B _{20,14}	General purpose I/O 09	
GPIO_08	M2	K1	B _{20,14}	General purpose I/O 08	

Table 5-7. Pin Functions – GPIO Peripheral Interface (continued)

PIN ^{(1) (3)}		UO(2)	DESCRIPTION		
NAME	ZDQ324	ZEK324	1/0(-/	DESCRIPTION	
GPIO_07	M1	J4	B _{20,14}	General purpose I/O 07	
GPIO_06	L3	J3	B _{20,14}	General purpose I/O 06	
GPIO_05	L2	H2	B _{20,14}	General purpose I/O 05	
GPIO_04	L1	H3	B _{20,14}	General purpose I/O 04	
GPIO_03	K3	J2	B _{20,14}	General purpose I/O 03	
GPIO_02	K2	H1	B _{20,14}	General purpose I/O 02	
GPIO_01	K1	J1	B _{20,14}	General purpose I/O 01	
GPIO_00	J3	H4	B _{20,14}	General purpose I/O 00	

(1) Some GPIO signals are reserved for specific purposes. These signals vary per product configuration. These product allocations are discussed further in Section 8.3.7. All GPIO that are available for Host use must be configured as an input, a standard output, or an open-drain output. This is set in the flash configuration or by command using the Host command interface. The reset default for all GPIO is as an input signal. An external pullup (≤ 10 kΩ) is required for each signal configured as open-drain.

(2) See Table 5-10 for more information on I/O definitions.

(3) All GPIO include hysteresis.

Table 5-8. Pin Functions – Clock and PLL Support

PIN		u(1)	DESCRIPTION		
NAME	ZDQ324	ZEK324	1/0(*)	DESCRIPTION	
PLL_REFCLK_I	D15	D12	I ₁₇	Reference clock crystal input. If an external oscillator is used in place of a crystal, this pin must be left unconnected (floating with no added capacitive load).	
PLL_REFCLK_O	D14	D13	B _{16,17}	Reference clock crystal return. <i>If an external oscillator is used in place of a crystal, this pin must be used for the oscillator input.</i>	
OSC_BYPASS	D16	C13	I ₁₉	Selects whether an external crystal or external oscillator will be used to drive the internal PLL. ('0' = Crystal, '1' = Oscillator) This pin includes a weak internal pulldown. If a pullup is used to obtain a '1' value, the pullup value must be $\leq 8 \text{ k}\Omega$.	

(1) See Table 5-10 for more information on I/O definitions.

Table 5-9. Pin Functions – Power and Ground

	PIN		DESCRIPTION		
NAME	ZDQ324	ZEK324	100	DESCRIPTION	
VCC18A_LVDS	B1, B22, C1, C22, D2, D3, D4, D5, D7, D18, D19, D20, D21, E20	B1, B18, C4, C6, C15, D3, D5, D14, D16, E13, F7, F8, F10, F12	PWR	1.8-V Power for the differential High-Speed and Low-Speed DMD Interfaces	
GND18A_LVDS	A1, A22, C2, C3, C4, C5, C6, C7, C16, C17, C18, C19, C20, C21, D8	A1, A18, C3, C5, C14, C16, D6, E8, E10, E12, E14, F6	RTN	1.8-V GND for the differential High-Speed and Low- Speed DMD Interfaces	
VCC18IO	D10	E9	PWR	1.8-V Power for 1.8-V IO	
VCC3IO_MVGP	H4	G5, H5	PWR	3.3-V Power for TPS99000-Q1 Interfaces	
VCC3IO_FLSH	V4	N5, P5	PWR	3.3-V Power for the Serial Flash Interface	
VCC3IO_INTF	K19, L19, M19, R19, T19	H14, L14, J14, M14	PWR	3.3-V Power for the Parallel Data, JTAG, and Host Command Interfaces	
VCC3IO_COSC	C15	E11	PWR	3.3-V I/O Power for the Crystal Oscillator	
GNDIOLA_COSC	C14	C12	RTN	3.3-V I/O GND for the Crystal Oscillator	

Table 5-9. Pin Functions – Power and Ground (continued)

	PIN		DESCRIPTION		
NAME	ZDQ324	ZEK324	1/0(*/	DESCRIPTION	
VCC3IO	J4, K4, M4, N4, P4, W4, W5, G19	F14, G14, K6, L5, M6, N7, P8	PWR	3.3-V I/O Power for all "other" I/O (such as GPIO, TSTPT, PMIC_AD3)	
VCC33A_LVDS	W9, W13, W15, W19, Y9, Y13, Y15, Y19	T3, T4, T8, T10, R11, T12, R13, T14, R15, V16	PWR	3.3-V I/O Power for the OpenLDI Interface	
GND33A_LVDS	W14, Y14, AA8, AA14, AA20, AB8, AB14, AB20, AB21	R12, R14, T5, T6, T9, T11, T13, T15, U3, U9, U15, V3, V9, V15	RTN	3.3-V I/O GND for the OpenLDI Interface	
VCC11AD_PLLM	D13	D11	PWR	1.1-V Analog/Digital Power for MCG (Master Clock Generator) PLL	
GND11AD_PLLM	C13	C11	RTN	1.1-V Analog/Digital GND for MCG (Master Clock Generator) PLL	
VCC11AD_PLLD	D12	C10	PWR	1.1-V Analog/Digital Power for DCG (DMD Clock Generator) PLL	
GND11AD_PLLD	C12	D10	RTN	1.1-V Analog/Digital GND for DCG (DMD Clock Generator) PLL	
VCC11A_DDI_0	E19, F19	F13, G13	PWR	1.1-V Filtered Core Power - External Filter Group A (HS DMD Interface 0)	
VCC11A_DDI_1	E4, F4	E6, E7	PWR	1.1-V Filtered Core Power - External Filter Group B (HS DMD Interface 1)	
VCC11A_LVDS	W11, W12, W17, W18	N10, P11, P12, P13, P14	PWR	1.1-V Filtered Core Power - External Filter Group C (OpenLDI Interface)	
VCCK	G4, H19, (J11), J19, L4, N19, P19, T4, U4, U19, V19, W6, W8, W10, W16	F9, F11, G6, H13, K13, L6, J6, M13, N6, N8, N9, N11	PWR	1.1-V Core Power (Ball numbers in parenthesis are also used as thermal ball and are located within the package center region)	
GND	(J9, J10, J12, J13, J14, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, N9, N10, N11, N12, N13, N14, P9, P10, P11, P12, P13,P14), Y3, AA1, AA2, AB1, AB2, AB22, Y10, Y11, Y12, Y16, Y17, Y18	(G7, G8, G9, G10, G11, G12, H7, H8, H9, H10, H11, H12, J7, J8, J9, J10, J11, J12, K7, K8, K9, K10, K11, K12, L7, L8, L9, L10, L11, L12, M7, M8, M9, M10, M11, M12), H6, J13, K14, L13, N12, N13, N14, V1, V18	RTN	1.1-V Core GND (Ball numbers in parenthesis are also used as thermal ball and are located within the package center region)	
EFUSE_VDDQ	W7	P9		Manufacturing use only. Must be tied to ground.	
EFUSE_POR33	Y8	P10		Manufacturing use only. Must be tied to ground.	
RPI_0	D17	D15	I ₅	Bandgap Reference for sub-LVDS drivers (Supports DMD_HS0_xxxx). Requires a resistor (1% Tolerance) to GND18A_LVDS - Value specified in Table 9-4.	
RPI_1	D6	D4	I ₅	Bandgap Reference for sub-LVDS drivers (Supports DMD_HS1_xxxx). Requires a resistor (1% Tolerance) to GND18A_LVDS - Value specified in Table 9-4.	
RPI_LS	D9	D7	I ₅	Bandgap References for sub-LVDS drivers (Supports DMD_LS0_xxxx differential bus signals). Requires a resistor (1% Tolerance) to GND18A_LVDS - Value specified in Table 9-4.	

(1) See Table 5-10 for more information on I/O definitions.

Table 5-10. I/O Type Subscript Definition

I/O			ESD STRUCTURE		
SUBSCRIPT	DESCRIPTION	SUFFLI REFERENCE	ESD STRUCTURE		
1	1.8-V LVCMOS Input	VCC18IO ESD diode to GND and supply ra			
2	1.8-V LVCMOS Output	VCC18IO	ESD diode to GND and supply rail		
3	1.8-V LVCMOS Input	VCC18IO	ESD diode to GND and supply rail		
4	1.8-V sub-LVDS Output	VCC18A_LVDS	ESD diode to GND and supply rail		
5	1.8-V sub-LVDS Input	VCC18A_LVDS	ESD diode to GND and supply rail		
6	3.3-V LVCMOS Output	VCC3IO_MVGP	ESD diode to GND and supply rail		
7	3.3-V LVCMOS Input	VCC3IO_MVGP	ESD diode to GND and supply rail		
8	3.3-V LVCMOS Output	VCC3IO_FLSH	ESD diode to GND and supply rail		
9	3.3-V LVCMOS Input	VCC3IO_FLSH	ESD diode to GND and supply rail		
10	3.3-V LVCMOS Output	VCC3IO_INTF	ESD diode to GND and supply rail		
11	3.3-V LVCMOS Input	VCC3IO_INTF	ESD diode to GND and supply rail		
12	3.3-V I ² C I/O	VCC3IO_INTF	ESD diode to GND and supply rail		
13	3.3-V LVCMOS Output	VCC3IO	ESD diode to GND and supply rail		
14	3.3-V LVCMOS Input	VCC3IO ESD diode to GND and supply rail			
15	3.3-V I ² C I/O with 3-mA drive	VCC3IO	ESD diode to GND and supply rail		
16	3.3-V LVCMOS Output	VCC3IO_OSC	ESD diode to GND and supply rail		
17	3.3-V LVCMOS Input	VCC3IO_OSC	ESD diode to GND and supply rail		
18	3.3-V LVDS Input	VCC33A_LVDS	ESD diode to GND and supply rail		
19	3.3-V LVCMOS Input	VCC3IO_OSC	ESD diode to GND and supply rail		
20	3.3-V LVCMOS Output	VCC3IO	ESD diode to GND and supply rail		
TYPE					
I	Input				
0	Output				
В	Bidirectional		N/A		
PWR	Power				
RTN	Ground return				

Table 5-11. Internal Pullup and Pulldown Characteristics

INTERNAL PULLUP AND PULLDOWN RESISTOR CHARACTERISTICS ⁽¹⁾ ⁽²⁾	VCCIO	MIN	МАХ	UNIT
Weak pullup resistance	3.3 V	40	190	kΩ
Weak pulldown resistance	3.3 V	30	190	kΩ

(1) The resistance is dependent on the supply voltage level applied to the I/O.

(2) An external 8-kΩ or less pullup or pulldown (if needed) will work for any voltage condition to correctly override any associated internal pullups or pulldowns.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
SUPPLY VOLTAGE ⁽²⁾			
V _(VCCK) (Core)	-0.5	1.5	V
V _(VCC11A_DDIx) (Core)	-0.5	1.5	V
V _(VCC11A_LVDS) (Core)	-0.5	1.5	V
V _(VCC11AD_PLLM) (Core)	-0.5	1.5	V
V _(VCC11AD_PLLD) (Core)	-0.5	1.5	V
V _(VCC18A_LVDS)	-0.5	2.5	V
V _(VCC18IO)	-0.5	2.5	V
V(VCC3IO_MVGP)	-0.5	4.6	V
V _(VCC3IO_INF)	-0.5	4.6	V
V _(VCC3IO_FLSH)	-0.5	4.6	V
V _(VCC3IO_OSC)	-0.5	4.6	V
V _(VCC3IO)	-0.5	4.6	V
V _(VCC33A_LVDS)	-0.5	4.6	V
GENERAL			
T _J Operating junction temperature	-40	125	°C
T _C Operating case temperature	-40	124 ⁽³⁾	°C
I _{lat} Latch-up	-100	100	mA
T _{stg} Storage temperature range	-40	150	°C

(1) Stresses beyond those listed under Section 6.1 may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Section 6.3. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to GND.

(3) Value calculated using package parameters defined in Section 6.4.

6.2 ESD Ratings

				VALUE ZDQ Package	VALUE ZEK Package	UNIT
		Human-body model (HBM), per AEC Q100-002 ⁽¹⁾		±2000	TBD	
	Electrostatic		All pins (except corner pins)	±500	TBD	
V(ESD)	discharge	Charged-device model (CDM), per AEC Q100-011	Corner pins only (ZDQ: A1, A22, AB0, and AB22) (ZEK: A1, A18, V1, V18)	±750	TBD	

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V _(VCCK)	Core power 1.1 V (main 1.1 V)	±5% tolerance	1.045	1.1	1.155	V
V _(VCC11A_DDI_0)	Core power 1.1 V (External Filter Group A - HS DMD Interface 0)	±8.18% tolerance ⁽¹⁾	1.01	1.1	1.19	V
V _(VCC11A_DDI_1)	Core power 1.1 V (External Filter Group B - HS DMD Interface 1)	±8.18% tolerance ⁽¹⁾	1.01	1.1	1.19	V
V _(VCC11A_LVDS)	Core power 1.1 V (External Filter Group C - OpenLDI Interface)	±8.18% tolerance ⁽¹⁾	1.01	1.1	1.19	V
V _(VCC11AD_PLLM)	MCG PLL 1.1-V power (Analog/Digital)	±8.18% tolerance ⁽¹⁾	1.01	1.1	1.19	V
V _(VCC11AD_PLLD)	DCG PLL 1.1-V power (Analog/Digital)	±8.18% tolerance ⁽¹⁾	1.01	1.1	1.19	V
V _(VCC18IO)	1.8-V I/O power (Supports DMD Single-Ended LS interface I/O)	±8.3% tolerance	1.65	1.8	1.95	V
V _(VCC18A_LVDS)	1.8-V I/O power (Supports High-Speed and Low- Speed differential DMD interfaces)	±8.3% tolerance	1.65	1.8	1.95	V
V _(VCC3IO_MVGP)	3/3-V I/O power (Supports TPS99000-Q1: SPI, interrupt, park, RESETZ, and LEDSEL interfaces	±8.5% tolerance	3.02	3.3	3.58	V
V _(VCC3IO_FLSH)	3/3-V I/O power (Supports serial flash interface)	±8.5% tolerance	3.02	3.3	3.58	V
V _(VCC3IO_INTF)	3.3-V I/O power (Supports: host command (SPI and I ² C), parallel data interface, HOST_IRQ, and JTAG	±8.5% tolerance	3.02	3.3	3.58	V
V _(VCC3IO_OSC)	3.3-V I/O power (Supports Oscillator)	±8.5% tolerance	3.02	3.3	3.58	V
V _(VCC33A_LVDS)	3.3-V I/O power (Supports OpenLDI interface)	±8.5% tolerance	3.02	3.3	3.58	V
V _(VCC3IO)	3.3-V I/O power (Supports all remaining I/O including: GPIO, PMIC_AD3, TSTPT, ETM_TRACE, et cetera)	±8.5% tolerance	3.02	3.3	3.58	V
TJ	Operating junction temperature		-40		125	°C
T _C	Operating case temperature		-40		124	°C
T _A	Operating ambient temperature ⁽²⁾		-40		105	°C

(1) These I/O supply ranges are wider to facilitate additional external filtering.

(2) Operating ambient temperature is dependent on system thermal design. Operating case temperature may not exceed its specified range across ambient temperature conditions.

6.4 Thermal Information

		DLPC230-Q1	DLPC231-Q1	
	THERMAL METRIC ⁽¹⁾	ZDQ (BGA)	ZEK (nfBGA)	UNIT
		324 PINS	324 PINS	
Ψ _{JT} ⁽²⁾	Temperature variance from junction to package top center temperature, per unit power dissipation	0.77	-	°C/W
Ψ _{JT} ⁽²⁾	Temperature variance from junction to package top center temperature, per unit power dissipation "Advance Information (not Production Data)"	-	0.2	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

(2) $(1.22 \text{ W}) \times (0.77^{\circ} \text{C/W}) \approx 1.00^{\circ} \text{C}$ temperature difference.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP ⁽¹⁾	MAX ⁽²⁾	UNIT
TOTAL			·		
I _(VCC11)	1.1-V total current		201	743.9	mA
I _(VCC18)	1.8-V total current		71	122.9	mA
I _(VCC33)	3.3-V total current		28.1	30.1	mA
ESTIMATED CU	IRRENT PER SUPPLY ⁽³⁾	-			
I _(VCCK)	1.1-V Core current		131.5	667.5	mA
I(VCC11A_DDI_0)	1.1-V Core current (Filtered)	At 600-MHz data rate	15.8	17.4	mA
I(VCC11A_DDI_1)	1.1-V Core current (Filtered)	At 600-MHz data rate	15.8	17.4	mA
I(VCC11A_LVDS)	1.1-V Core current (Filtered)	OpenLDI Interface, single port, 5 lanes active	22.5	24.8	mA
I(VCC11AD_PLLM)	1.1-V Core current (MCG PLL)		7.7	8.4	mA
I(VCC11AD_PLLD)	1.1-V Core current (DCG PLL)		7.7	8.4	mA
I(VCC18A_LVDS)	1.8-V I/O current (Both 8-bit ports - DMD HS differential Interface)	At 600-MHz data rate	63.3	106.6	mA
I(VCC18A_LVDS)	1.8-V I/O current (DMD LS differential Interface)	At 120-MHz data rate	5.2	8.7	mA
I _(VCC18IO)	1.8-V I/O current (DMD LS single- ended interfaces, DMD reset)		2.5	7.6	mA
I(VCC3IO_MVGP)	3.3-V I/O current (TPS99000-Q1 SPI, TPS99000-Q1 Reset, PMIC_PARKZ, RESETZ)		1.7	1.8	mA
	3.3-V I/O current (Host SPI, Host I ² C, Host IRQ, JTAG, Parallel Port)		1.7	1.8	mA
I(VCC3IO_FLSH)	3.3-V I/O current (Serial Flash SPI interface)		5.5	5.9	mA
I(VCC3IO_OSC)	3.3-V I/O current (Crystal/Oscillator)	With 3-k Ω external series resistor (R _S)	0.975	1.3	mA
I _(VCC3IO)	3.3-V I/O current (GPIO, PMIC_AD3, Mstr I ² C, TSTPT, ETM, and so forth)		12.6	13.5	mA
I(VCC33A_LVDS)	3.3-V I/O current (OpenLDI Interface - each port - 5 lanes active)		6.3	6.8	mA

(1) Typical-case power measured with PVT condition = nominal process, typical voltage, typical temperature (25°C junction). Input source 1152 × 576 24-bit 60-Hz OpenLDI with RGBW ramp image.

(2) Worst-case power PVT condition = corner process, high voltage, high temperature (125°C junction). Input source 1152 × 1152 24-bit. 60 Hz OpenLDI with pseudo-random noise image.

(3) Estimated current per supply was not directly measured. These values are based on an approximate expected current consumption percentage of the total measured current drawn by each voltage rail.

6.6 Electrical Characteristics for Fixed Voltage I/O

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	· · ·	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
		1.8-V LVCMOS (I/O type 3)		0.7 × VCC18IO		
		3.3-V LVCMOS (I/O type 7)		2.0		-
		3.3-V LVCMOS (I/O type 9)		2.0		
	High-level	3.3-V LVCMOS (I/O type 11)		2.0		
VIH	input threshold	3.3-V I ² C buffer (I/O type 12)		0.7 × VCC_INTF		V
	voltage	3.3-V LVCMOS (I/O type 14)		2.0		-
		3.3-V LVCMOS (I/O type 16,17)		0.7 × VCC3IO		
		3.3-V LVCMOS (I/O type 19)		2.0		
		3.3-V I ² C buffer (I/O type 15)		0.7 × VCC3IO		-
		1.8-V LVCMOS (I/O type 3)			0.3 × VCC18IO	
		3.3-V LVCMOS (I/O type 7)			0.8	-
		3.3-V LVCMOS (I/O type 9)			0.8	
	Low-level	3.3-V LVCMOS (I/O type 11)			0.8	
VIL	input threshold	3.3-V I ² C buffer (I/O type 12)			0.3 × VCC_INTF	V
	voltage	3.3-V LVCMOS (I/O type 14)			0.8	-
		3.3-V LVCMOS (I/O type 16,17)			0.3 × VCC3IO	
		3.3-V LVCMOS (I/O type 19)			0.8	
		3.3-V I ² C buffer (I/O type 15)			0.3 × VCC3IO	-
		1.8-V LVCMOS (I/O type 1,2)	I _{OH} = Max rated	0.75 × VCC18IO		
		3.3-V LVCMOS (I/O type 6)	I _{OH} = Max rated	2.4		
		3.3-V LVCMOS (I/O type 8)	I _{OH} = Max rated	2.4		-
	High-level	3.3-V LVCMOS (I/O type 10)	I _{OH} = Max rated	2.4		1
VOH	output voltage	3.3-V I ² C buffer (I/O type 12)	I _{OH} = Max rated	N/A		- V
	renage	3.3-V LVCMOS (I/O type 13)	I _{OH} = Max rated	2.4		-
		3.3-V I ² C buffer (I/O type 15)	I _{OH} = Max rated	N/A		
		3.3-V LVCMOS (I/O type 20)	I _{OH} = Max rated	2.4		-
		1.8-V LVCMOS (I/O type 1,2)	I _{OL} = Max rated		0.4	
		3.3-V LVCMOS (I/O type 6)	I _{OL} = Max rated		0.4	
		3.3-V LVCMOS (I/O type 8)	I _{OL} = Max rated		0.4	
	Low-level	3.3-V LVCMOS (I/O type 10)	I _{OL} = Max rated		0.4	1
VOL	output voltage	3.3-V I ² C buffer (I/O type 12)	I _{OL} = Max rated		0.4	- V
		3.3-V LVCMOS (I/O type 13)	I _{OL} = Max rated		0.4	
		3.3-V I ² C buffer (I/O type 15)	I _{OL} = Max rated		0.4	
		3.3-V LVCMOS (I/O type 20)	I _{OL} = Max rated		0.4	
		1.8-V LVCMOS (I/O type 1)		6		
		1.8-V LVCMOS (I/O type 2)		7.2		-
		3.3-V LVCMOS (I/O type 6)		6		_
	High lovel	3.3-V LVCMOS (I/O type 8)		6		-
I _{OH}	output	3.3-V LVCMOS (I/O type 10)		6		mA
	current	3.3-V I ² C buffer (I/O type 12)		N/A		1
		3.3-V LVCMOS (I/O type 13)		8		1
		3.3-V I ² C buffer (I/O type 15)		N/A		1
		3.3-V LVCMOS (I/O type 20)		6		1

6.6 Electrical Characteristics for Fixed Voltage I/O (continued)

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
		1.8-V LVCMOS (I/O type 1)		6			
		1.8-V LVCMOS (I/O type 2)		7.2			
		3.3-V LVCMOS (I/O type 6)		6			
	Low-level	3.3-V LVCMOS (I/O type 8)		6			
I _{OL}	output	3.3-V LVCMOS (I/O type 10)		6			mA
	current	3.3-V I ² C buffer (I/O type 12)		3			
		3.3-V LVCMOS (I/O type 13)		8			
		3.3-V I ² C buffer (I/O type 15)		3			
		3.3-V LVCMOS (I/O type 20)		6			
		1.8-V LVCMOS (I/O type 1,2)			±1.0	±10	
		3.3-V LVCMOS (I/O type 6)			±1.0	±10	
		3.3-V LVCMOS (I/O type 8)			±1.0	±10	
	High-	3.3-V LVCMOS (I/O type 10)			±1.0	±10	
I _{OZ}	impedance leakage	3.3-V I ² C buffer (I/O type 12)				±10	μA
	current	3.3-V LVCMOS (I/O type 13)			±1.0	±10	
		3.3-V LVCMOS (I/O type 16)			±1.0		
		3.3-V I ² C buffer (I/O type 15)				±10	
		3.3-V LVCMOS (I/O type 20)			±1.0	±10	

(1) The number inside each parenthesis for the I/O refers to the type defined in Table 5-10.

6.7 DMD High-Speed Sub-LVDS Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	·	MIN	NOM	MAX	UNIT
V _{CM}	Steady-state common mode voltage	1.8-V sub-LVDS (I/O type 4,5)	0.8	0.9	1.0	V
V _{CM} (Дрр) ⁽¹⁾	V _{CM} change peak-to-peak (during switching)	1.8-V sub-LVDS (I/O type 4,5)			75	mV
V _{CM} (Δss) ⁽¹⁾	V _{CM} change steady state	1.8-V sub-LVDS (I/O type 4,5)	-10		10	mV
V _{OD} ⁽²⁾	Differential output voltage magnitude. R_{BGR} = 75k Ω .	1.8-V sub-LVDS (I/O type 4,5)	155	200	250	mV
V _{OD} (Δ) ⁽³⁾	V _{OD} change (between logic states)	1.8-V sub-LVDS (I/O type 4,5)	-10		10	mV
V _{OH}	Single-ended output voltage high	1.8-V sub-LVDS (I/O type 4,5)	0.88	1.00	1.125	V
V _{OL}	Single-ended output voltage low	1.8-V sub-LVDS (I/O type 4,5)	0.675	0.80	0.925	V
t _R ⁽²⁾	Differential output rise time	1.8-V sub-LVDS (I/O type 4,5)			250	ps
t _F ⁽²⁾	Differential output fall time	1.8-V sub-LVDS (I/O type 4,5)			250	ps
f _{MAX}	Max switching rate	1.8-V sub-LVDS (I/O type 4,5)			1200	Mbps
DCout	Output duty cycle	1.8-V sub-LVDS (I/O type 4,5)	45%	50%	55%	
Tx _{term} ⁽¹⁾	Internal differential termination	1.8-V sub-LVDS (I/O type 4,5)	80	100	120	Ω

(1) Definition of V_{CM} changes:

DLPC230-Q1, DLPC231-Q1 DLPS054G – DECEMBER 2015 – REVISED SEPTEMBER 2023

(2) Note that V_{OD} is the differential voltage swing measured across a 100- Ω termination resistance connected directly between the transmitter differential pins. $|V_{OD}|$ is the magnitude of the peak to peak voltage swing across the P and N output pins. Because V_{CM} cancels out when measured differentially, V_{OD} voltage swings relative to 0. Rise and fall times are defined for the differential V_{OD} signal as follows:

 $\label{eq:constraint} \begin{array}{c} \text{Differential Output Signal} \\ \text{(Note: V_{CM} is removed when signals are viewed differentially)} \end{array}$

(3) When TX data input = '1', differential output voltage V_{OD1} is defined. When TX data input = '0', differential output voltage V_{OD0} is defined. As such, the steady state magnitude of the difference is: |V_{OD}| (Δ) = ||V_{OD1}| - |V_{OD0}||.

6.8 DMD Low-Speed Sub-LVDS Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER		MIN	NOM	MAX	UNIT
V _{CM}	Steady-state common mode voltage	1.8-V sub-LVDS (I/O type 4,5)	0.8	0.9	1.0	V
V _{CM} (Дрр) ⁽¹⁾	V _{CM} change peak-to-peak (during switching)	1.8-V sub-LVDS (I/O type 4,5)			75	mV
V _{CM} (Δss) ⁽¹⁾	V _{CM} change steady state	1.8-V sub-LVDS (I/O type 4,5)	-10		10	mV
V _{OD} ⁽²⁾	Differential output voltage magnitude. R_{BGR} = 75k Ω .	1.8-V sub-LVDS (I/O type 4,5)	155	200	250	mV
V _{OD} (Δ) ⁽³⁾	V _{OD} change (between logic states)	1.8-V sub-LVDS (I/O type 4,5)	-10		10	mV
V _{OH}	Single-ended output voltage high	1.8-V sub-LVDS (I/O type 4,5)	0.88	1.00	1.125	V
V _{OL}	Single-ended output voltage low	1.8-V sub-LVDS (I/O type 4,5)	0.675	0.80	0.925	V
t _R ⁽²⁾	Differential output rise time	1.8-V sub-LVDS (I/O type 4,5)			250	ps
t _F ⁽²⁾	Differential output fall time	1.8-V sub-LVDS (I/O type 4,5)			250	ps
t _{MAX}	Max switching rate	1.8-V sub-LVDS (I/O type 4,5)			240	Mbps
DCout	Output duty cycle	1.8-V sub-LVDS (I/O type 4,5)	45%	50%	55%	
Tx _{term}	Internal differential termination	1.8-V sub-LVDS (I/O type 4,5)	80	100	120	Ω

(1) Definition of V_{CM} changes:

(2) Note that V_{OD} is the differential voltage swing measured across a 100-Ω termination resistance connected directly between the transmitter differential pins. |V_{OD}| is the magnitude of the peak to peak voltage swing across the P and N output pins. Because V_{CM} cancels out when measured differentially, V_{OD} voltage swings relative to 0. Rise and fall times are defined for the differential V_{OD} signal as follows:

(3) When TX data input = '1', differential output voltage V_{OD1} is defined. When TX data input = '0', differential output voltage V_{OD0} is defined. As such, the steady state magnitude of the difference is: $|V_{OD1}| (\Delta) = ||V_{OD1}| - |V_{OD0}||$.

6.9 OpenLDI LVDS Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER		MIN	NOM	MAX	UNIT
V _{CM}	Steady-state common mode voltage	3.3-V LVDS (I/O type 18)	0.35	1.2	1.6	V
V _{ID}	Differential Input Voltage	3.3-V LVDS (I/O type 18)	100		700	mV
Rx _{term}	Internal differential termination	3.3-V LVDS (I/O type 18)	90	111	132	Ω

6.10 Power Dissipation Characterisics

	PARAMETER	VALUE	UNIT
P _{MAX}	Package - Maximum Power	1.22	W

6.11 System Oscillators Timing Requirements

			MIN	NOM	MAX	UNIT
f _{clock}	Clock frequency, MOSC ⁽¹⁾		15.997	16.000	16.003	MHz
t _c	Cycle time, MOSC ⁽¹⁾		62.488	62.500	62.512	ns
t _{w(H)}	Pulse duration ⁽²⁾ , MOSC, high	50% to 50% reference points (signal)	40% of t _c			
t _{w(L)}	Pulse duration ⁽²⁾ , MOSC, low	50% to 50% reference points (signal)	40% of t _c			
tt	Transition time ⁽²⁾ , MOSC, $t_t = t_f / t_r$	20% to 80% reference points (signal)	0.2		2	ns
t _{jp}	Long term periodic jitter ⁽²⁾ , MOSC (that is the deviation in period from ide	al period due solely to high frequency jitter)			100	ps

(1) The MOSC input cannot support spread spectrum clock spreading.

(2) Applies only when driven through an external digital oscillator. This is a 1 sigma RMS value.

Figure 6-1. System Oscillators

Table 6-1. Crystal / Oscillator Electrical Characteristics

PARAMETER	NOMINAL	UNIT
PLL_REFCLK_I TO GND capacitance	3.5	pF

Table 6-1. Crystal / Oscillator Electrical Characteristics (continued)

PARAMETER	NOMINAL	UNIT
PLL_REFCLK_O TO GND capacitance	3.45	pF

6.12 Power Supply and Reset Timing Requirements

			MIN MAX	UNIT
TPS99	000-Q1 REQUIREMENTS ⁽¹⁾			
t _{ramp}	Power supply ramp time ⁽²⁾	Power supply ramp to minimum recommended operating voltage	0.5 10	ms
t _{ps_aln}	1.1-V Power Supply Alignment ⁽³⁾	Leading edge for application or removal of power. Each 1.1-V power supply to the DLPC23x-Q1 must be applied simultaneously within this time.	10	μs
t _{rst}	RESETZ low to Power Supply disable ⁽⁴⁾	Leading edge for removal of power	1.0	μs
t _{w(L1)}	Pulse duration, active low, RESETZ ⁽⁴⁾	95% power to 50% RESETZ reference point At initial application of power	5.0	ms
t _{w(L2)}	Pulse duration, active low, RESETZ	50% to 50% reference points (RESETZ) Subsequent resets after initial application of power	1.0	μs
tt	Transition time, RESETZ, $t_t = t_f$ and t_r	20% to 80% reference points (signal)	6	μs

(1) The TPS99000-Q1 controls power supply timing for the DLPC23x-Q1. Refer to the TPS99000-Q1 data sheet for additional system power timing requirements.

- (2) Power supplies do not need to ramp simultaneously, but each supply must reach its minimum voltage within the maximum ramp time specified.
- (3) The DLPC23x-Q1 does not require specific sequencing or alignment of 1.8-V and 3.3-V supplies. However, the TPS99000-Q1 enforces sequencing of the 1.1-V, 1.8-V, and 3.3-V voltage rails. The following describes DLPC23x-Q1 behavior when the voltage rails are not brought up simultaneously:
 - VCCK (1.1-V core) Power = On, I/O Power = Off, RESETZ = '0': While this condition exists, additional leakage current can be drawn, and all outputs are unknown (likely to be a weak "low").
 - VCCK (1.1-V core) Power = Off, I/O Power = On, RESETZ = '0': While this condition exists all outputs are tri-stated.

Neither of these two conditions will impact normal DLPC23x-Q1 reliability.

(4) RESETZ must be held low if any supply (Core or I/O) is less than its minimum specified on value. For more information on RESETZ, see Section 5.

6.13 Parallel Interface General Timing Requirements

			MIN	MAX	UNIT
f _{clock}	Clock frequency, PCLK		12.0	110.0	MHz
t _{p_clkper}	Clock period, PCLK	50% reference points	9.091	83.33	ns
t _{p_wh}	Pulse duration low, PCLK	50% reference points	2.286		ns
t _{p_wl}	Pulse duration high, PCLK	50% reference points	2.286		ns
t _{p_su}	Setup time – HSYNC, DATEN, PDATA(23:0) valid before the active edge of PCLK	50% reference points	0.8		ns
t _{p_h}	Hold time – HSYNC, DATEN, PDATA(23:0) valid after the active edge of PCLK	50% reference points	0.8		ns
t _{t_clk}	Transition time – PCLK	20% to 80% reference points		6	ns
tt	Transition time – all other signals on this port	20% to 80% reference points		6	ns
$f_{\sf spread}$	Supported Spread Spectrum range	Percent of f_{clock} rate	-1%	+1% ⁽¹⁾	
$f_{\sf mod}$	Supported Spread Spectrum Modulation	Frequency ⁽¹⁾ (2)	25	65 ⁽³⁾	kHz
t _{p_clkjit}	Clock jitter, PCLK			t _{p_clkper} – 5.414	ps

(1) This value is limited by the maximum clock frequency for f_{clock} (that is, if $f_{clock} = \max \operatorname{clock}$ freq, then $f_{spread} \max = 0\%$).

(2) Modulation Waveforms supported: Sine and Triangle.

(3) Spread spectrum modulation tested at a maximum of 35 kHz. Simulated up to 65 kHz.

Figure 6-3. Parallel Interface General Timing

6.14 OpenLDI Interface General Timing Requirements

The DLPC23x-Q1 ASIC input interface supports a subset of the industry standard OpenLDI (FPD-Link I) interface (Open LVDS Display Interface Specification v0.95 - May 13, 1999). Specifically, from the standard, the ASIC supports the 24-bit, Single Pixel Format, using the Unbalanced Operating Mode and Pixel Mapping.

			MIN	NOM	MAX	UNIT
f_{clock}	Clock frequency, L1_CLK_P/N, L2_	CLK_P/N	20.0		110	MHz
t _p	Clock period, PCLK	50% reference points	9.091		50	ns
t _{skew}	Skew Margin (between clock and data)	$f_{\rm clock}$ = 85 MHz	-400 (5)	0	400 ⁽⁵⁾	ps
t _{skew_ports}	Clock to clock skew margin between ports on same ASIC, and between ports on different ASICs				1	clocks
t _{ip0}	Input data position 1		(t _p / 7) – t _{skew}	(t _p / 7)	$(t_p / 7) + t_{skew}$	ps
t _{ip6}	Input data position 2		2 * (t _p / 7) – t _{skew}	2 * (t _p / 7)	2 * (t _p / 7) + t _{skew}	ps
t _{ip5}	Input data position 3		3 * (t _p / 7) – t _{skew}	3 * (t _p / 7)	3 * (t _p / 7) + t _{skew}	ps
t _{ip4}	Input data position 4		4 * (t _p / 7) – t _{skew}	4 * (t _p / 7)	4 * (t _p / 7) + t _{skew}	ps
t _{ip3}	Input data position 5		5 * (t _p / 7) – t _{skew}	5 * (t _p / 7)	5 * (t _p / 7) + t _{skew}	ps
t _{ip2}	Input data position 6		6 * (t _p / 7) – t _{skew}	6 * (t _p / 7)	6 * (t _p / 7) + t _{skew}	ps

6.14 OpenLDI Interface General Timing Requirements (continued)

The DLPC23x-Q1 ASIC input interface supports a subset of the industry standard OpenLDI (FPD-Link I) interface (Open LVDS Display Interface Specification v0.95 - May 13, 1999). Specifically, from the standard, the ASIC supports the 24-bit, Single Pixel Format, using the Unbalanced Operating Mode and Pixel Mapping.

			MIN	NOM	MAX	UNIT
t _{jitter}	Input Jitter Tolerance (cycle to cycle, peak to peak)				100	ps
$f_{\sf spread}$	Supported Spread Spectrum range	percent of f_{clock} rate	-1% ⁽¹⁾		+1% ⁽²⁾	
$f_{\sf mod}$	Supported Spread Spectrum Modulation Frequency ^{(3) (4)}		25		65	kHz

(1) This value is limited by the minimum clock frequency for f_{clock} (that is, if f_{clock} = min clock freq, then f_{spread} max = 0%).

(2) This value is limited by the maximum clock frequency for f_{clock} (that is, if $f_{clock} = \max \operatorname{clock}$ freq, then $f_{spread} \max = 0\%$).

(3) Modulation Waveforms supported: Sine and Triangle.

(4) Spread spectrum on OpenLDI interfaces was simulated, but not tested.

(5) t_{skew} for other f_{clock} values can be estimated by +/- t_{skew} = -7.143 * f_{clock} + 1007.1 - (t_{jitter} - 100)

Figure 6-4. OpenLDI Interface Timing

6.15 Parallel/OpenLDI Interface Frame Timing Requirements

Soo	(1)	
See	· · /	

			MIN	MAX	UNIT
VSYNC	Vertical Sync Rate (for the specified active source resolution)	1152 × 576 See Section 7.2.1.	58	61	Hz
VSYNC	Vertical Sync Rate (for the specified active source resolution)	1152 × 1152 See Section 7.2.1.	58	61	Hz
VSYNC	Vertical Sync Rate (for the specified active source resolution)	576 × 288 See Section 7.2.1.	58	61	Hz
t _{p_vsw}	Pulse duration – VSYNC high	50% reference points	1		lines
t _{p_vbp}	Vertical back porch (VBP) – time from the leading edge of VSYNC to the leading edge HSYNC for the first active line (includes $t_{p_v sw}$).	50% reference points	2		lines
t _{p_vfp}	Vertical front porch (VFP) – time from the leading edge of the HSYNC following the last active line in a frame to the leading edge of VSYNC	50% reference points	1		lines
t _{p_tvb}	Total vertical blanking – time from the leading edge of HSYNC following the last active line of one frame to the leading edge of HSYNC for the first active line in the next frame. (This is equal to the sum of VBP $(t_{p_vbp}) + VFP(t_{p_vfp}))$	50% reference points	14		lines
t _{p_hsw}	Pulse duration – HSYNC high	50% reference points	8		PCLKs
t _{p_hbp}	Horizontal back porch – time from rising edge of HSYNC to rising edge of DATEN (includes $t_{p_hsw})$	50% reference points	9		PCLKs
t _{p_hfp}	Horizontal front porch – time from falling edge of DATEN to rising edge of HSYNC	50% reference points	8		PCLKs
t _{p_thb}	Total horizontal blanking	50% reference points	64		PCLKs
TPPL	Total Pixels Per Line			8191	Pixels

(1) While these requirements are not specific to the OpenLDI interface, they are appropriate for any source that drives an OpenLDI transmitter connected to the ASIC OpenLDI interface.

6.16 Host/Diagnostic Port SPI Interface Timing Requirements

The DLPC23x-Q1 ASIC Host/Diagnostic SPI port interface timing requirements are shown below.⁽¹⁾

			MIN	MAX	UNIT
f _{clock}	Clock frequency, HOST_SPI_CLK (50% reference points)			10.00	MHz
t _{p_wh}	Pulse duration low, HOST_SPI_CLK (50% reference points)		45.0		ns
t _{p_wl}	Pulse duration high, HOST_SPI_CLK (50% reference points)		45.0		ns
t _t	Transition time – all input signals	20% to 80% reference points		6	ns
t _{p_su}	Setup time – HOST_SPI_DIN valid before HOST_SPI_CLK capture edge (50% reference points)		10.0		ns
t _{p_h}	Hold time – HOST_SPI_DIN valid after HOST_SPI_CLK capture edge	50% reference points	18.0		ns
t _{out}	Clock-to-Data out - HOST_SPI_DOUT from HOST_SPI_CLK launch edge (50% reference points)		0.0	35.0	ns

(1) The DLPC23x-Q1 Host/Diagnostic Port SPI interface supports SPI Modes 0, 1, 2, and 3 (that is, both clock polarities and both clock phases). The HOST_SPI_MODE input must be set to match the SPI mode being used.

Figure 6-6. Host/Diagnostic Port SPI Interface Timing (Example: SPI Mode 0 (Clock Polarity = 0, Clock Phase = 0))

6.17 Host/Diagnostic Port I²C Interface Timing Requirements

The DLPC23x-Q1 ASIC Host/Diagnostic I²C port interface timing requirements are shown below.^{(1) (2)}

			MIN MAX	UNIT
f _{clock} Clock frequency, HOST_I ² C_SCL (50% reference points)	Fast-Mode	400		
	(50% reference points)	S) Standard Mode	100	KIIZ
CL	L Capacitive Load (for each bus line)		200	pF

(1) Meets all I²C timing per the I²C Bus Specification (except for capacitive loading as specified above). For reference see version 2.1 of the Phillips/NXP specification.

(2) The maximum clock frequency does not account for rise time, nor added capacitance of PCB or external components which can adversely impact this value.

6.18 Flash Interface Timing Requirements

The DI PC23x-Q1 ASIC flash memor	v interface consists of a SPI serial interface. See Section 8.3.4	4
		Γ.

	(1)		MIN	MAX	UNIT
f _{clock}	Clock frequency, FLSH_SPI_CLK	When VCC3IO_FLSH = 3.3 VDC	9.998	50.01 ⁽²⁾	MHz
t _{p_clkper}	Clock period, FLSH_SPI_CLK (50% reference points)	When VCC3IO_FLSH = 3.3 VDC	20.0	100	ns
t _{p_wh}	Pulse duration low, FLSH_SPI_CLK (50% reference points)	When VCC3IO_FLSH = 3.3 VDC	9		ns
t _{p_wl}	Pulse duration high, FLSH_SPI_CLK (50% reference points)	When VCC3IO_FLSH = 3.3 VDC	9		ns
t _t	Transition time – all input signals	20% to 80% reference points		6	ns
t _{p_su}	Setup time – FLSH_SPI_DIO[3:0] valid before FLSH_SPI_CLK falling edge (50% reference points)	When VCC3IO_FLSH = 3.3 VDC	7.0		ns
t _{p_h}	Hold time – FLSH_SPI_DIO[3:0] valid after FLSH_SPI_CLK falling edge	50% reference points	0.0		ns
t _{p_clqv}	FLSH_SPI_DIO[3:0] output delay valid time (with respect to falling edge of FLSH_SPI_CLK or falling edge of FLSH_SPI_CSZ) (50% reference points)	When VCC3IO_FLSH = 3.3 VDC	-3.0	3.0	ns

(1) The DLPC23x-Q1 communicates with flash devices using a slight variant of SPI Transfer Mode 0 (that is, clock polarity = 0, clock phase = 0). Instead of capturing MISO data on the clock edge opposite from that used to transmit MOSI data, the DLPC23x-Q1 captures MISO data on the same clock edge used to transmit the next MOSI data. As such, the DLPC23x-Q1 Flash SPI interface requires that MISO data from the flash device remain active until the end of the full clock cycle to allow the last data bit to be captured. This is shown in Figure 6-8.

(2) The actual maximum clock rate driven from the DLPC23x-Q1 can be slightly less than this value.

Figure 6-7. Flash Interface Timing

Figure 6-8. Flash Interface Data Capture Requirements

6.19 TPS99000-Q1 SPI Interface Timing Requirements

The DLPC23x-Q1 ASIC to TPS99000-Q1 interface consists of a SPI serial interface.

	(1)		MIN	MAX	UNIT
f _{clock}	Clock frequency, PMIC_SPI_CLK		9.998	30.006	MHz
t _{p_clkper}	Clock period, PMIC_SPI_CLK r (50% reference points)			100	ns
t _{p_wh}	Pulse duration high, PMIC_SPI_CLK (50% reference points)				ns
t _{p_wl}	Pulse duration low, PMIC_SPI_CLK (50% reference points)				ns
t _t	Transition time – all input signals	20% to 80% reference points		6	ns
t _{p_su}	Setup time – PMIC_SPI_DIN valid before PMIC_SPI_CLK falling edge (50% reference points)				ns
t _{p_h}	Hold time – PMIC_SPI_DIN valid after PMIC_SPI_CLK falling edge	50% reference points	0.0		ns
t _{p_clqv}	PMIC_SPI_DOUT output delay (valid) time (with respect to falling edge of PMIC_SPI_CLK or falling edge of PMIC_SPI_CSZ0) (50% reference points)			3.0	ns

(1) The DLPC23x-Q1 communicates with the TPS99000-Q1 using a slight variant of SPI Transfer Mode 0 (that is, clock polarity = 0, clock phase = 0). Instead of capturing MISO data on the clock edge opposite from that used to transmit MOSI data, the DLPC23x-Q1 captures MISO data on the same clock edge used to transmit the next MOSI data. As such, the DLPC23x-Q1 SPI interface to the TPS99000-Q1 requires that MISO data from the TPS99000-Q1 remain active until the end of the full clock cycle to allow the last data bit to be captured. This is shown in Figure 6-12.

Figure 6-9. TPS99000-Q1 Interface Timing

Figure 6-10. TPS99000-Q1 Interface Data Capture Requirements

6.20 TPS99000-Q1 AD3 Interface Timing Requirements

The DLPC23x-Q1 ASIC to TPS99000-Q1 AD3 interface is used to retrieve ADC measurements from the TPS99000-Q1. The interface is similar to SPI and includes a clock, MOSI, and MISO signal.

	(1) (2) (3)		MIN	MAX	UNIT
f _{clock}	Clock frequency, PMIC_AD3_CLK		29.326	30.006	MHz
t _{p_clkper}	Clock period, PMIC_AD3_CLK (50% reference points)		33.327	34.100	ns
t _{p_wh}	Pulse duration high, PMIC_AD3_CLK (50% reference points) (Referenced to t _{p_clkper})				
t _{p_wl}	Pulse duration low, PMIC_AD3_CLK (50% reference points) (Referenced to t _{p_clkper})				
t _t	Transition time – all input signals	20% to 80% reference points		6	ns
t _{p_su}	Setup time – PMIC_AD3_MISO valid before PMIC_AD3_CLK rising edge (50% reference points)				ns
t _{p_h}	Hold time – PMIC_AD3_MISO valid after PMIC_AD3_CLK rising edge (50% reference points)				ns
t _{p_clqv}	PMIC_AD3_MOSI output delay (valid) time (with respect to falling edge of PMIC_SPI_CLK) (50% reference points)			2.0	ns

(1) PMIC_AD3_MOSI (Master (DLPC23x-Q1) Output / Slave (TPS99000-Q1) Input) is transmitted on the falling edge of PMIC_AD3_CLK.

(2) PMIC_AD3_MISO (Master (DLPC23x-Q1) Input / Slave (TPS99000-Q1) Output) is captured on the rising edge of PMIC_AD3_CLK.

(3) PMIC_AD3_CLK is used as the primary TPS99000-Q1 system clock in addition to supporting the AD3 interface.

Figure 6-11. TPS99000-Q1 AD3 Interface Timing

Figure 6-12. TPS99000-Q1 AD3 Data Capture and Transition

6.21 Master I²C Port Interface Timing Requirements

The DLPC23x-Q1 ASIC Master I²C port interface timing requirements are shown below.

	(1) (2)	MIN MAX	UNIT	
f	Clock frequency, MSTR_SCL	Fast-Mode	400	<i>ل</i> الم
Iclock	(50% reference points)	Standard Mode	100	KI IZ
CL	Capacitive Load (for each bus line)		200	pF

(1) Meets all I²C timing per the I²C Bus Specification (except for Capacitive Loading as specified above).

(2) The maximum clock frequency does not account for rise time, nor added capacitance of PCB or external components which can adversely impact this value.

6.22 Chipset Component Usage Specification

TI DLP[®] chipsets include a DMD and one or more controllers. Reliable function and operation of TI DMDs requires that they be used in conjunction with all of the other components in the applicable chipset, including those components that contain or implement TI DMD control technology, such as the DLPC23x-Q1. TI DMD control technology is the TI technology and devices for operating or controlling a DLP[®] products DMD.

7 Parameter Measurement Information

7.1 HOST_IRQ Usage Model

In the DLPC23x-Q1, the Host_IRQ signal is used to serve as an indication that a serious system error has occurred for which the ASIC has executed an emergency shutdown. The specific errors that precipitated the shutdown can be retrieved through the Host Command and Control interface. The actions that are taken by the ASIC for an emergency shutdown are:

- LEDs are disabled.
- The DMD is parked and powered-down.
- The ASIC operational mode is transitioned to Standby.
- The precipitating errors are captured for later review.
- The Host_IRQ signal is set to a high state.

To recover from an emergency shutdown, the system will require a full power cycle (deassertion of PROJ_ON). The host must obtain the error history from the ASIC prior to this full reset, as the reset will remove all error history from the system.

Figure 7-1. Host IRQ Timing

7.2 Input Source

The video input source can be configured to accomodate various desired input resolutions. Image processing such as scaling and line replication can be applied to achieve the necessary display resolution. The desired input resolution can depend on product configuration.

7.2.1 Supported Input Sources

The supported sources with typical timings are shown in Table 7-1. These typical timing examples do not minimize blanking or pixel clock rate. Refer to *Section 6.15* for minimum timing specifications.

Table 7-1. Typical Timing for Supported Source Resolutions											
		HORIZONTAL BLANKING			VERTICAL BLANKING						
HORIZONTAL RESOLUTION	VERTICAL RESOLUTION	TOTAL ⁽¹⁾	SYNC (PIXEL CLOCKS)	BACK PORCH (PIXEL CLOCKS)	FRONT PORCH (PIXEL CLOCKS)	TOTAL ⁽¹⁾	SYNC (LINES)	BACK PORCH (LINES)	FRONT PORCH (LINES)	VERTICAL RATE (Hz)	PIXEL CLOCK (MHz)
576	288	322	8	154	160	181	8	83	90	60	25.270
1152	576	80	8	32	40	25	8	14	3	60	44.426
1152	1152	80	8	32	40	33	8	6	19	60	87.595
480	240	420	32	80	308	230	10	6	214	60	25.35
960	480	240	96	120	24	20	10	7	3	60	36.000
960	960	160	8	80	48	28	10	15	3	60	66.250
1358	566	92	8	32	52	44	10	31	3	60	53.050
1220	610	156	8	80	44	19	10	6	3	60	51.900

 Table 7-1. Typical Timing for Supported Source Resolutions

(1) Sync clocks/lines are counted as a part of total blanking in these examples (Total Blanking = sync + back porch + front porch). Note that the specifications in *Section 6.15* include sync width as part of back porch (Total Blanking = back porch + front porch).

7.2.2 Parallel Interface Supported Data Transfer Formats

• 24-bit RGB888 on a 24 data wire interface

7.2.2.1 OpenLDI Interface Supported Data Transfer Formats

• 1X 24-bit RGB888 on a 5-lane differential interface

Section 7.2.2.1.1 shows the required OpenLDI bus mapping for the supported data transfer formats.

7.2.2.1.1 OpenLDI Interface Bit Mapping Modes

L1_CLK			
L1_DATA0	$\times \longrightarrow$	G0 R5 R4 R3	R2 R1 R0
L1_DATA1		B1 B0 G5 G4	G3 G2 G1
L1_DATA2		DV VSYNC HSYNC B5	B4 B3 B2
L1_DATA3	$\times \longrightarrow$	RES* B7 B6 G7	G6 R7 R6
	Previous Cycle	Current Cycle	

A. * = Use is undefined/reserved

8 Detailed Description

8.1 Overview

The automotive DLP[®] Products chipset consists of three components – the DMD (DLP553x-Q1 or DLP462xS-Q1), the DLPC23x-Q1, and the TPS99000-Q1. The DLPC23x-Q1 is the display controller for the DMD - it formats incoming video and controls the timing of the DMD. It also controls TPS99000-Q1 light source signal timing to coordinate with DMD timing to synchronize light output with DMD mirror movement. The DLPC23x-Q1 is designed for automotive applications with a wide operating temperature range and diagnostic features to identify and correct specific system-level failures. The DLPC23x-Q1 provides interfaces such as OpenLDI (video) and sub-LVDS (DMD interface) to minimize power consumption and EMI. Applications include head-up display (HUD) and adaptive high beam and smart headlight.

8.2 Functional Block Diagram

Figure 8-1. Functional Block Diagram

DLPC230-Q1, DLPC231-Q1 DLPS054G - DECEMBER 2015 - REVISED SEPTEMBER 2023

Figure 8-2. Alternate Functional Block Diagram

8.3 Feature Description

8.3.1 Parallel Interface

The parallel interface complies with standard graphics interface protocol, which includes a vertical sync signal (VSYNC), horizontal sync signal (HSYNC), data valid signal (DATEN), a 24-bit data bus (PDATA x), and a pixel clock (PCLK). Figure 6-5 shows the relationship of these signals.

Note

VSYNC must remain active at all times. If VSYNC is lost, the DMD must be transitioned to a safe state. When the system detects a VSYNC loss, it will switch to a test pattern or splash image as specified in flash by the Host.

The parallel interface supports intra-interface bit multiplexing (specified in flash) that can help with board layout as needed. The intra-interface bit multiplexing allows the mapping of any PDATA x input to any internal data bus bit. When utilizing this feature, each unique input pin can only be mapped to one unique destination bit. The typical mapping is shown in Figure 8-3. An example of an alternate mapping is shown in Figure 8-4.

FXAS

Figure 8-3. Example of Typical Parallel Port Bit Mapping

Figure 8-4. Example of Alternate Parallel Port Bit Mapping

8.3.2 OpenLDI Interface

Each DLPC23x-Q1 OpenLDI interface port supports intra-port lane multiplexing (specified in flash) that can help with board layout as needed. The intra-port multiplexing allows the mapping of any Lx_DATA lane pair to any internal data lane pair. When utilizing this feature, each unique lane pair can only be mapped to one unique

Texas

INSTRUMENTS

www.ti.com

destination lane pair. The typical lane mapping is shown in Figure 8-5. An example of an alternate lane mapping is shown in Figure 8-6.

Figure 8-5. Example of Typical OpenLDI Port Lane Mapping

DLPC230-Q1, DLPC231-Q1 DLPS054G – DECEMBER 2015 – REVISED SEPTEMBER 2023

Figure 8-6. Example of Alternate OpenLDI Port Lane Mapping

Texas

INSTRUMENTS

www.ti.com

8.3.3 DMD (Sub-LVDS) Interface

The DLPC23x-Q1 ASIC DMD interface supports two high-speed sub-LVDS output-only interfaces for data transmission, a single low-speed sub-LVDS output-only interface for command write transactions, as well as a low-speed single-ended input interface used for command read transactions. The DLPC23x-Q1 supports a limited number of DMD interface swap configurations (specified in Flash) that can help board layout by remapping specific combinations of DMD interface lines to other DMD interface lines as needed. Table 8-1 shows some of the options available.

DLPC				
BASELINE	FULL FLIP HS0/HS1 180	SWAP HS0 PORT WITH HS1 PORT	SWAP HS0 PORT WITH HS1 PORT AND FULL FLIP 180	DMD PINS
HS0_WDATA0_P	HS0_WDATA7_P	HS1_WDATA0_P	HS1_WDATA7_P	D_AP(0)
HS0_WDATA0_N	HS0_WDATA7_N	HS1_WDATA0_N	HS1_WDATA7_N	D_AN(0)
HS0_WDATA1_P	HS0_WDATA6_P	HS1_WDATA1_P	HS1_WDATA6_P	D_AP(1)
HS0_WDATA1_N	HS0_WDATA6_N	HS1_WDATA1_N	HS1_WDATA6_N	D_AN(1)
HS0_WDATA2_P	HS0_WDATA5_P	HS1_WDATA2_P	HS1_WDATA5_P	D_AP(2)
HS0_WDATA2_N	HS0_WDATA5_N	HS1_WDATA2_N	HS1_WDATA5_N	D_AN(2)
HS0_WDATA3_P	HS0_WDATA4_P	HS1_WDATA3_P	HS1_WDATA4_P	D_AP(3)
HS0_WDATA3_N	HS0_WDATA4_N	HS1_WDATA3_N	HS1_WDATA4_N	D_AN(3)
HS0_WDATA4_P	HS0_WDATA3_P	HS1_WDATA4_P	HS1_WDATA3_P	D_AP(4)
HS0_WDATA4_N	HS0_WDATA3_N	HS1_WDATA4_N	HS1_WDATA3_N	D_AN(4)
HS0_WDATA5_P	HS0_WDATA2_P	HS1_WDATA5_P	HS1_WDATA2_P	D_AP(5)
HS0_WDATA5_N	HS0_WDATA2_N	HS1_WDATA5_N	HS1_WDATA2_N	D_AN(5)
HS0_WDATA6_P	HS0_WDATA1_P	HS1_WDATA6_P	HS1_WDATA1_P	D_AP(6)
HS0_WDATA6_N	HS0_WDATA1_N	HS1_WDATA6_N	HS1_WDATA1_N	D_AN(6)
HS0_WDATA7_P	HS0_WDATA0_P	HS1_WDATA7_P	HS1_WDATA0_P	D_AP(7)
HS0_WDATA7_N	HS0_WDATA0_N	HS1_WDATA7_N	HS1_WDATA0_N	D_AN(7)
HS1_WDATA0_P	HS1_WDATA7_P	HS0_WDATA0_P	HS0_WDATA7_P	D_BP(0)
HS1_WDATA0_N	HS1_WDATA7_N	HS0_WDATA0_N	HS0_WDATA7_N	D_BN(0)
HS1_WDATA1_P	HS1_WDATA6_P	HS0_WDATA1_P	HS0_WDATA6_P	D_BP(1)
HS1_WDATA1_N	HS1_WDATA6_N	HS0_WDATA1_N	HS0_WDATA6_N	D_BN(1)
HS1_WDATA2_P	HS1_WDATA5_P	HS0_WDATA2_P	HS0_WDATA5_P	D_BP(2)
HS1_WDATA2_N	HS1_WDATA5_N	HS0_WDATA2_N	HS0_WDATA5_N	D_BN(2)
HS1_WDATA3_P	HS1_WDATA4_P	HS0_WDATA3_P	HS0_WDATA4_P	D_BP(3)
HS1_WDATA3_N	HS1_WDATA4_N	HS0_WDATA3_N	HS0_WDATA4_N	D_BN(3)
HS1_WDATA4_P	HS1_WDATA3_P	HS0_WDATA4_P	HS0_WDATA3_P	D_BP(4)
HS1_WDATA4_N	HS1_WDATA3_N	HS0_WDATA4_N	HS0_WDATA3_N	D_BN(4)
HS1_WDATA5_P	HS1_WDATA2_P	HS0_WDATA5_P	HS0_WDATA2_P	D_BP(5)
HS1_WDATA5_N	HS1_WDATA2_N	HS0_WDATA5_N	HS0_WDATA2_N	D_BN(5)
HS1_WDATA6_P	HS1_WDATA1_P	HS0_WDATA6_P	HS0_WDATA1_P	D_BP(6)
HS1_WDATA6_N	HS1_WDATA1_N	HS0_WDATA6_N	HS0_WDATA1_N	D_BN(6)
HS1_WDATA7_P	HS1_WDATA0_P	HS0_WDATA7_P	HS0_WDATA0_P	D_BP(7)
HS1_WDATA7_N	HS1_WDATA0_N	HS0_WDATA7_N	HS0_WDATA0_N	D_BN(7)

Table 8-1. ASIC to 8-Lane DMD Pin Mapping Options

8.3.4 Serial Flash Interface

The DLPC23x-Q1 uses an external SPI serial flash memory device for configuration and operational data. The minimum supported size is 16 Mb. Larger devices can be required based on operation data and splash image size. The maximum supported size is 128 Mb. It must be noted that the system will support 256 Mb and 512 Mb devices, however, only the first 128 Mb of space are used.

The external serial flash device is supported on a single SPI interface and mostly complies with industry standard SPI flash protocol (See Figure 6-8). The Host will specify the maximum supported flash interface

frequency (which can be based on device limits, system limits, and/or other factors) and the system will program the closest obtainable value less than or equal to this specified maximum.

The DLPC23x-Q1 ASIC flash must be connected to the designated SPI flash interface (FLSH_SPI_xxx) to enable support for system initialization, configuration, and operation.

The DLPC23x-Q1 must support any flash device that is compatible with the modes of operation, features, and performance as defined in this section.

FEATURE	DLPC23x-Q1 REQUIREMENT	COMMENTS
SPI interface width	Single Wire, Two Wire, Four Wire	
SPI protocol	SPI mode 0	
Fast READ addressing	Auto-incrementing	
Programming mode	Page mode	
Page size	256 Bytes	
Sector (or sub-sector) size	4 KB	Required erase granularity
Block structure	Uniform sector / sub-sector	
Block protection bits	0 = Disabled (with Default = 0 = Disabled)	
Status register bit(0)	Write in progress (WIP) {also called flash busy}	
Status register bit(1)	Write enable latch (WEN)	
Status register bits(6:2)	A value of 0 disables programming protection	
Status register bit(7)	Status register write protect (SRWP)	
Status register bits(15:8) (expanded status register), or Secondary Status register	The DLPC23x-Q1 supports multi-byte status registers, as well as separate, additional status registers, but only for specific devices/register addresses. The supported registers and addresses are specified in Table 8-3.	

Table 8-2. SPI Flash Required Features or Modes of Operation

CAUTION

The selected SPI flash device must block repeated status writes from being written to internal register. The boot application writes to the flash device status register once per 256 bytes during programming. Most flash devices discard status register writes when the status content does not change. Some flash parts, such as the Micron N25Q128A13ESFA0F, do not block status writes when the status data is repeated. This causes the status register to exceed its maximum write limit after several programming cycles, making them incompatible with the DLPC23x-Q1. Note that the main application does not write to the status register.

For each write operation, the DLPC23x-Q1 boot application executes the following:

- 1. Write enable command
- 2. Write status command (to unprotect memory)
- 3. Read status command to poll the successful execution of the write status (repeated as needed)
- 4. Write enable command
- 5. Program or erase command
- 6. Read status command (repeated as needed) to poll the successful execution of the program or erase operation
- 7. Write disable command (during programming; this is not performed after erase command.)

For each write operation, the DLPC230-Q1 main application executes the following:

- 1. Write enable command
- 2. Program or erase command
- 3. Read status command (repeated as needed) to poll the successful execution of the program or erase operation
- 4. Write disable command (during programming; this is not performed after erase command)

The specific instruction op-code and timing compatibility requirements are listed in Table 8-3 and *Flash Interface Timing Requirements*. Note that DLPC230-Q1 does not read the flash's full electronic signature ID and thus cannot automatically adapt protocol and clock rates based on the ID.

SPI FLASH COMMAND	FIRST BYTE (OP-CODE)	SECOND BYTE	THIRD BYTE	FOURTH BYTE	FIFTH BYTE	SIXTH BYTE	NO. OF DUMMY CLOCKS	COMMENTS
Fast READ (1/1)	0x0B	ADDRS(0)	ADDRS(1)	ADDRS(2)	dummy	DATA(0) ⁽¹⁾	8	See Table 8-4.
Dual READ (1/2)	0x3B	ADDRS(0)	ADDRS(1)	ADDRS(2)	dummy	DATA(0) ⁽¹⁾	8	See Table 8-4.
2X READ (2/2)	0xBB	ADDRS(0)	ADDRS(1)	ADDRS(2)	dummy	DATA(0) ⁽¹⁾	4	See Table 8-4.
Quad READ (1/4)	0x6B	ADDRS(0)	ADDRS(1)	ADDRS(2)	dummy	DATA(0) ⁽¹⁾	8	See Table 8-4.
4X READ (4/4)	0xEB	ADDRS(0)	ADDRS(1)	ADDRS(2)	dummy	DATA(0) ⁽¹⁾	6	See Table 8-4.
Read status	0x05	n/a	n/a	STATUS(0)	STATUS(1)		0	Status(1) - Winbond only
Write status	0x01	STATUS(0)	STATUS(1)				0	Status(1) - Winbond only
Read Volatile Conf Reg	0x85	Data(0)					0	Micron Only
Write Volatile Conf Reg	0x81	Data(0)					0	Micron Only
Write Enable	0x06						0	
Write Disable	0x04						0	
Page program	0x02	ADDRS(0)	ADDRS(1)	ADDRS(2)	DATA(0) ⁽¹⁾		0	
Sector/Sub- sector Erase (4KB)	0x20	ADDRS(0)	ADDRS(1)	ADDRS(2)			0	
Full Chip Erase	0xC7						0	
Software Reset Enable	0x66							
Software Reset	0x99							
Read Id	0x9F	Data(0)	Data(1)	Data(2)				System only reads 1st three bytes.

Table 8-3. SPI Flash Instruction Op-Code and Access Profile Compatibility Requirements

(1) Only the first data byte is shown, data continues.

More detailed information on the various read operations supported are shown in Table 8-4.

 Table 8-4. SPI Flash Supported Read Operation Details

READ TYPE ⁽²⁾	NUMBER OF LINES FOR OP-CODE ⁽¹⁾	NUMBER OF LINES FOR ADDRESS	NUMBER OF LINES FOR DUMMY BYTES	NUMBER OF LINES FOR RETURN DATA			
Fast Read (1/1)	1	1	1	1			
Dual Read (1/2)	1	1	1	2			
2X Read (2/2)	1	2	2	2			
Quad Read (1/4)	1	1	1	4			
4X Read (4/4)	1	4	4	4			

(1) System does not support Read op-codes being spread across more than one data line.

(2) Flash vendors have diverged in naming and controlling their various read capabilities. As such, the Host needs to be very careful to fully understand what is and what is not supported by the DLPC23x-Q1. In general, for the supported devices, the DLPC23x-Q1 only supports "Extended SPI" or "SPI Mode" (as defined in the various Flash Data Sheets). It does not support "Dual SPI Mode", "Quad SPI Mode", "QPI", "QPI Mode", "Dual QPI", "DTR", or "DDR". If uncertain, most devices will support "Fast Reads" in a manner that is consistent with the DLPC23x-Q1.

Table 8-5. DLPC23x-Q1 Compatible SPI Flash Device Options

DENSITY (M-BITS) ⁽²⁾ ⁽³⁾	VENDOR	PART NUMBER	PACKAGE SIZE		
3.3-V Compatible Devices					

DENSITY (M-BITS) ^{(2) (3)}	VENDOR	PART NUMBER	PACKAGE SIZE	
128	Micron ⁽¹⁾	MT25QL128ABA8ESF-OAAT	SO16	
128	Macronix	MX25L12835FMR-10G	SO16	
128	Macronix	MX25L12845GMR-10G	SO16	
128	Macronix	MX25L12839FXDQ-10G	BGA25	

(1) Care must be used when considering Numonyx versions of Micron serial flash devices as they typically do not have the 4KB sector size needed to be DLPC23x-Q1 compatible.

(2) For any devices not listed on this table, special care must be taken to insure that the requirements shown in Table 8-2 and Table 8-3 are met.

(3) The boot application writes to the flash device status register once per 256 bytes during programming. Most flash devices discard status register writes when the status content does not change. Some flash parts, such as Micron N25Q128A13ESFA0F, do not block status writes when the status data is repeated. This causes the status register to exceed its maximum write limit after several programming cycles, making them incompatible with the DLPC23x-Q1. Note that the main application does not write to the status register.

While the DLPC23x-Q1 supports a variety of clock rates and read operation types, it does have a minimum flash read bandwidth requirement which is shown in Table 8-6. This minimum read bandwidth can be met in any number of different ways, with the variables being clock rate and read type. The Host is required to select a flash device which can meet this minimum read bandwidth using the DLPC23x-Q1 supported interface capabilities. It must be noted that the Host will specify to the system (through flash parameter) the maximum supported clock rate as well as the supported read types for their selected flash device, with which the DLPC23x-Q1 SW will automatically select an appropriate combination to maximize this bandwidth (which must at least meet the minimum bandwidth requirement assuming a solution exists per the specified parameters).

Table 8-6. SPI Flash Interface Bandwidth Requirements

	PARAMETER	MIN	MAX	UNIT
FLSH_RD _{BW}	Flash Read Interface Bandwidth	47.00		Mbps

8.3.5 Serial Flash Programming

The serial flash can be programmed through the DLPC23x-Q1 using Host commands through the SPI or I²C command and control interface.

8.3.6 Host Command and Diagnostic Processor Interfaces

The DLPC23x-Q1 provides an interface port for Host commands, as well as an interface port for a *diagnostic processor*. There are two external communication ports dedicated for this use: one SPI interface and one I²C interface. The host specifies (through the ASIC input pin) which port is used for which purpose (for example, Host Command Interface \rightarrow SPI, therefore "diagnostic processor" \rightarrow I²C — or they can be reversed).

Section 6.16 shows the timing requirements for the SPI interface. Section 6.17 shows the timing requirements for the l^2C interface. The l^2C target address pair is 36h/37h.

8.3.7 GPIO Supported Functionality

The DLPC23x-Q1 provides 32 general purpose I/O that are available to support a variety of functions for a number of different product configurations. In general, most of these I/O will only support one specific function based on a specific product configuration, although that function can be different for a different product configuration. There are also a few of these I/O that have been reserved for use by the Host for whatever function they can require. In addition, most of these I/O can also be made available for TI test and debug use. Definitions for the HUD and Headlight product configurations are shown in Table 8-7 and Table 8-8.

Table 8-7	GPIO Supported	Eunctionality -	HUD Product	Configuration
Table 0-7.	GFIO Supported	Functionality -	HOD FIOUUCI	Configuration

GPIO	SIGNAL NAME	DESCRIPTION ⁽¹⁾
GPIO_00	PMIC_CNTRL_OUT (input)	LED control feedback from the TPS99000-Q1. An external pull-down resistor must be used (connects to TPS99000-Q1 Drive Enable).
GPIO_01	PMIC_SEQ_STRT (output)	Sequence start output from the DLPC23x-Q1. This must be connected to the TPS99000-Q1 to time LED related actions and shadow TPS99000-Q1 configuration registers. An external pull-down resistor must be used.
GPIO_02	PMIC_COMP_OUT (input)	LED optical comparison feedback. This is used to count light pulses during each frame. This signal is active-low. An external pull-down resistor must be used.
GPIO_03	PMIC_LED_SEN (output)	LED Shunt Enable - shunts current from LEDs to allow faster LED turn- off. An external pull-down resistor must be used.
GPIO_04	PMIC_LED_DEN (output)	LED FET Drive Enable - enables LED current switching and defines LED pulse length. An external pull-down resistor must be used.
GPIO_05	Reserved for Future Use	An external pull-down resistor must be used
GPIO_06	Host Available	Available for general host use through host commands
GPIO_07	Host Available	Available for general host use through host commands
GPIO_08	Host Available	Available for general host use through host commands
GPIO_09	Reserved for Future Use	An external pull-down resistor must be used
GPIO_10	Reserved for Future Use	An external pull-down resistor must be used
GPIO_11	Reserved for Future Use	An external pull-down resistor must be used
GPIO_12	Reserved for Future Use	An external pull-down resistor must be used
GPIO_13	Reserved for Future Use	An external pull-down resistor must be used
GPIO_14	Reserved for Future Use	An external pull-down resistor must be used
GPIO_15	PMIC_WD1 (output)	Periodic signal that the DLPC23x-Q1 processor generates during normal operation. TPS99000-Q1 monitors this signal and reports if this signal stops pulsing. An external pull-down resistor must be used.
GPIO_16	Reserved for Future Use	An external pull-down resistor must be used
GPIO_17	Host Available	Available for general host use through host commands
GPIO_18	Reserved for Future Use	An external pull-down resistor must be used
GPIO_19	Reserved for Future Use	An external pull-down resistor must be used
GPIO_20	Reserved for Future Use	An external pull-down resistor must be used
GPIO_21	Reserved for Future Use	An external pull-down resistor must be used
GPIO_22	Reserved for Future Use	An external pull-down resistor must be used
GPIO_23	Reserved for Future Use	An external pull-down resistor must be used
GPIO_24	Reserved for Future Use	An external pull-down resistor must be used
GPIO_25	Reserved for Future Use	An external pull-down resistor must be used
GPIO_26	Host Available	Available for general host use through host commands
GPIO_27	Host Available	Available for general host use through host commands
GPIO_28	Host Available	Available for general host use through host commands
GPIO_29	Host Available	Available for general host use through host commands
GPIO_30	Host Available	Available for general host use through host commands
GPIO_31	Host Available	Available for general host use through host commands

 TI recommends that all unused Host Available GPIO be configured as a logic '0' output and be left unconnected in the system. If this is not done, an external pull-down resistor (≤ 10 kΩ) must be used to avoid floating inputs.

Table 8-8. GPIO Supported Functionality - Headlight Product Configuration

GPIO	SIGNAL NAME	DESCRIPTION (1)
GPIO_00	HL_PWM0 (output)	PWM 0 Output - This can be used for general purposes such as controlling the level of an external light source.
GPIO_01	PMIC_SEQ_STRT (output)	Sequence start output from the DLPC23x-Q1. This must be connected to the TPS99000-Q1 to time LED related actions and shadow TPS99000-Q1 configuration registers. An external pull-down resistor must be used.
GPIO_02	HL_PWM1(output)	PWM 1 Output - This can be used for general purposes such as controlling the level of an external light source.
GPIO_03	Reserved for Future Use	An external pull-down resistor must be used
GPIO_04	Reserved for Future Use	An external pull-down resistor must be used
GPIO_05	Reserved for Future Use	An external pull-down resistor must be used
GPIO_06	Host Available	Available for general host use through host commands
GPIO_07	Host Available	Available for general host use through host commands
GPIO_08	Host Available	Available for general host use through host commands
GPIO_09	Reserved for Future Use	An external pull-down resistor must be used
GPIO_10	Reserved for Future Use	An external pull-down resistor must be used
GPIO_11	Reserved for Future Use	An external pull-down resistor must be used
GPIO_12	Reserved for Future Use	An external pull-down resistor must be used
GPIO_13	Reserved for Future Use	An external pull-down resistor must be used
GPIO_14	Reserved for Future Use	An external pull-down resistor must be used
GPIO_15	PMIC_WD1 (output)	Periodic signal that the DLPC23x-Q1 processor generates during normal operation. TPS99000-Q1 monitors this signal and reports if this signal stops pulsing. An external pull-down resistor must be used.
GPIO_16	Reserved for Future Use	An external pull-down resistor must be used
GPIO_17	HL_PWM2 (output)	PWM 2 Output - This can be used for general purposes such as controlling the level of an external light source.
GPIO_18	EXT_SMPL	Connects to TPS99000-Q1 EXT_SMPL input. This sequence-aligned signal can be configured to trigger TPS99000-Q1 ADC sampling.
GPIO_19	Reserved for Future Use	An external pull-down resistor must be used
GPIO_20	Reserved for Future Use	An external pull-down resistor must be used
GPIO_21	Reserved for Future Use	An external pull-down resistor must be used
GPIO_22	Reserved for Future Use	An external pull-down resistor must be used
GPIO_23	Reserved for Future Use	An external pull-down resistor must be used
GPIO_24	Reserved for Future Use	An external pull-down resistor must be used
GPIO_25	Reserved for Future Use	An external pull-down resistor must be used
GPIO_26	Host Available	Available for general host use through host commands
GPIO_27	Host Available	Available for general host use through host commands
GPIO_28	Host Available	Available for general host use through host commands
GPIO_29	Host Available	Available for general host use through host commands
GPIO_30	Host Available	Available for general host use through host commands
GPIO_31	Host Available	Available for general host use through host commands

(1) TI recommends that all unused Host Available GPIO be configured as a logic '0' output and be left unconnected in the system. If this is not done, an external pull-down resistor (≤ 10 kΩ) must be used to avoid floating inputs.

8.3.8 Built-In Self Test (BIST)

The DLPC23x-Q1 provides a significant amount of BIST support to manage the operational integrity of the system. This BIST support is divided into two general BIST types, which are non-periodic and periodic.

Non-periodic BISTs are tests that are typically run one time, and are run outside of normal operation because their activity will disturb the operation of the system. These tests are specified to be run either by a Flash

parameter or by a Host command. The Flash parameter specifies which tests are to be run during system power-up and initialization. The Host command is used to select and specify the running of these tests when the system is in Standby Mode (often just before the system is powered down). Some examples of non-periodic tests are: tests for all of the ASIC memories, tests for the main data processing path, and testing of the DMD memory.

Periodic BISTs are tests that are run on an almost continual basis during normal ASIC operation. These tests are managed (set up, enabled, results gathered and evaluated) automatically by the ASIC embedded software. Some examples of periodic tests are: tuning and verification of the DMD High-Speed Interface, input source monitoring (clock, active pixels, active lines), and external video checksum monitoring.

For more information on BISTs, refer to *DLPC230-Q1 Programmer's Guide* (*DLPU041 for HUD and DLPU048 for Headlight*).

8.3.9 EEPROMs

The DLPC23x-Q1 can optionally use an external I²C EEPROM memory device for storage of calibration data as an alternative to storing calibration data in the SPI flash memory. The EEPROM must be connected to the designated DLPC23x-Q1 master I²C interface (MSTR_XXX).

Table 8-9. DLPC23x-Q1 Supported EEPROMs						
MANUFACTURER	PART NUMBER	DENSITY (Kb)	PACKAGE SIZE			
STMicro	M24C64A125	64	S08			
STMicro	M24C128A125	128	S08			
Atmel	A24C64D	64	S08			
Atmel	A24C128C	128	S08			

The DLPC23x-Q1 supports the EEPROM devices listed in Table 8-9.

8.3.10 Temperature Sensor

The DLPC23x-Q1 requires an external temperature sensor (TMP411) to measure the DMD temperature through a remote temperature sense diode residing within the DMD. The DLPC23x-Q1 will also read the local temperature reported by the TMP411 device. The TMP411 must be connected to the designated DLPC23x-Q1 master I²C interface (MSTR_XXX).

The DLPC23x-Q1 uses an averaged DMD temperature reading to manage the thermal environment and/or operation of the DMD. This management occurs over the full range of temperatures supported by the DMD. This temperature reading is used change sequence operation across the temperature range, and park the DMD when it is operated outside of its allowable temperature specification.

8.3.11 Debug Support

The DLPC23x-Q1 contains a test point output port, TSTPT_(7:0), which provides the Host with the ability to specify a number of initial system configurations, as well as to provide for ASIC debug support. These test points are tri-stated while reset is applied, are sampled as inputs approximately 1.5 µs after reset is released, and then switch to outputs after the input values have been sampled. The sampled and captured input state for each of these signals is used to configure initial system configurations as specified in the table Pin Functions - Parallel Port Input Data and Control in *Section 5*.

There are three other signals (JTAGTDO(3:1)) that are sampled as inputs approximately 1.5 μ s after reset is released, and then switched to outputs. The sampled and captured state for each of these JTAGTDO signals is used to configure the initial test mode output state of the TSTPT_(7:0) signals. Table 8-10 defines the test mode selection for a few programmable output states for TSTPT_(7:0) as defined by JTAGTDO(3:1). For normal use (that is, no debug required), the default state of x111 (using weak internal pull-ups) must be used to allow for the normal use of these JTAG TDO signals.

To allow TI to make use of this debug capability, a jumper to an external pull-down is recommended for JTAGTDO(3:1).

		.,	
	JTAGTDO(3:1) CAPTURED VALUE		
TSTPT_(7:0) OUTPUT ⁽¹⁾	x111 (DEFAULT) (NO SWITCHING ACTIVITY)	x010 CLOCK DEBUG OUTPUT	
TSTPT(0)	HI-Z	60 MHz	
TSTPT(1)	HI-Z	30 MHz	
TSTPT(2)	HI-Z	7.5 MHz	
TSTPT(3)	HI-Z	LOW	
TSTPT(4)	HI-Z	15 MHz	
TSTPT(5)	HI-Z	60 MHz	
TSTPT(6)	HI-Z	LOW	
TSTPT(7)	HI-Z	LOW	

Table 8-10. Test Mode Selection Scenario Defined by JTAGTDO(3:1)

(1) These are only the default output selections. Software can reprogram the selection at any time.

8.4 Device Functional Modes

The DLPC23x-Q1 has three operational modes—Standby, Display, and Calibration—that are enabled through software commands through the host control interface.

8.4.1 Standby Mode

The system will automatically enter Standby mode after power is applied. This is a reduced functional mode that allows Flash update operations and Non-Periodic test operations. The DMD will be parked while the system is operating in this mode and no source can be displayed.

8.4.2 Display Mode

This is the main operational mode of the system. In this mode, normal display activities occur. In this mode the system can display video data and execute periodic BISTs. After system initialization, a host command can be used to transition to this mode from Standby mode. Alternatively, a flash configuration setting can be set to allow the system to automatically transition from standby to display mode after system initialization.

8.4.3 Calibration Mode

This mode is used to calibrate the system's light sources for the desired display properties. For head-up display applications, this includes the ability to adjust individual color light sources to achieve the desired brightness and color point.

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The DLPC23x-Q1 is designed to support projection-based automotive applications such as head-up display (HUD) and high resolution headlight.

This DLP[®] Products chipset consists of three components—the Digital Micromirror Device (DMD), the DLPC23x-Q1, and the TPS99000-Q1. The DMD (DLP553x-Q1 or DLP462xS-Q1) is a light modulator consisting of tiny mirrors that are used to form and project images. The DLPC23x-Q1 is a controller for the DMD; it formats incoming video sources and controls the timing of the DMD illumination sources and the DMD to display the incoming video source. The TPS99000-Q1 is a controller for the illumination sources (LEDs or lasers) and a management IC for the entire chipset. In conjunction, the DLPC23x-Q1 and the TPS99000-Q1 can also be used for system-level monitoring, diagnostics, and failure detection features.

9.2 Typical Application

9.2.1 Head-Up Display

The figure below shows the system block diagram for a DLP® technology HUD.

Figure 9-1. HUD System Block Diagram

9.2.1.1 Design Requirements

The DLPC23x-Q1 is a controller for the DMD and the timing of the RGB LEDs in the HUD. It requests the proper timing and amplitude from the LEDs to achieve the requested color and brightness from the HUD across the entire operating range. It synchronizes the DMD with these LEDs to display full-color video content sent by the host.

The DLPC23x-Q1 receives command and input video data from a host processor in the vehicle. Read and write (R/W) commands can be sent using either the l²C bus or SPI bus. The bus that is not being used for R/W commands can be used as a read-only bus for diagnostic purposes. Input video can be sent over an OpenLDI bus or a parallel 24-bit bus. The SPI flash memory provides the embedded software for the DLPC23x-Q1's embedded processor, color calibration data, and default settings. The TPS99000-Q1 provides diagnostic and monitoring information to the DLPC23x-Q1 using a SPI bus and several other control signals such as PARKZ, INTZ, and RESETZ to manage power-up and power-down sequencing. The DLPC23x-Q1 interfaces to a TMP411 through l²C for temperature information.

The outputs of the DLPC23x-Q1 are LED drive information to the TPS99000-Q1, control signals to the DMD, and monitoring and diagnostics information to the host processor. Based on a host requested brightness and the operating temperature, the DLPC23x-Q1 determines the proper timing and amplitudes for the LEDs. It passes this information to the TPS99000-Q1 using a SPI bus and several additional control signals such as D_EN, S_EN, and SEQ_STRT. It controls the DMD mirrors by sending data over a sub-LVDS bus. It can alert the host about any critical errors using a HOST_IRQ signal.

The TPS99000-Q1 is a highly-integrated mixed-signal IC that controls DMD power, the analog response of the LEDs, and provides monitoring and diagnostics information for the HUD system. The power sequencing and monitoring blocks of the TPS99000-Q1 properly power up the DMD, provide accurate DMD voltage rails, as well as monitor the system's power rails during operation. The integration of these functions into one IC significantly reduces design time and complexity. The highly accurate photodiode (PD) measurement system and the dimming controller block precisely control the LED response. This enables a DLP technology HUD to achieve a very high dimming range (> 5000:1) with accurate brightness and color across the temperature range of the system. Finally, the TPS99000-Q1 has several general-purpose ADCs that developers can use for system-level monitoring, such as over-brightness detection.

The TPS99000-Q1 receives inputs from the DLPC23x-Q1, power rail voltages for monitoring, a photodiode that is used to measure LED response, the host processor, and potentially several other ADC ports. The DLPC23x-Q1 sends commands to the TPS99000-Q1 over a SPI port and several other control signals. The TPS99000-Q1 includes watchdogs to monitor the DLPC23x-Q1 and verify it is operating as expected. The power rails are monitored by the TPS99000-Q1 to detect power failures or glitches and request a proper power down of the DMD in case of an error. The photodiode's current is measured and amplified using a transimpedance amplifier (TIA) within the TPS99000-Q1. The host processor can read diagnostics information from the TPS99000-Q1 using a dedicated SPI bus, adding an independent monitoring path from the host processor. Additionally the host can request the system to be turned on or off using a PROJ_ON signal. The TPS99000-Q1 has several general-purpose ADCs that can be used to implement other system features such as over-brightness and over-temperature detection.

The outputs of the TPS99000-Q1 are LED drive signals, diagnostic information, and error alerts to the DLPC23x-Q1. The TPS99000-Q1 has signals connected to the LM3409 buck controller for high power LEDs and to discrete hardware that control the LEDs. The TPS99000-Q1 can output diagnostic information to the host and the DLPC23x-Q1 over two SPI buses. It also has signals such as RESETZ, PARKZ, and INTZ that can be used to trigger power down or reset sequences.

The DMD is a micro-electro-mechanical system (MEMS) device that receives electrical signals as an input (video data) and produces a mechanical output (mirror position). The electrical interface to the DMD is a sub-LVDS interface driven with the DLPC23x-Q1. The mechanical output is the state of more than 1.3 million mirrors in the DMD array that can be tilted ±12°. In a projection system, the mirrors are used as pixels to display an image.

9.2.2 Headlight

Figure 9-2 shows the system block diagram for a DLP[®] headlight.

Figure 9-2. Headlight System Block Diagram

9.2.2.1 Design Requirements

The DLPC230-Q1 is a controller for the DMD and the light sources in the DLP technology headlight. It receives input video from the host and synchronizes DMD and light source timing to achieve the desired video output. The DLPC230-Q1 formats input video data that is displayed on the DMD. It synchronizes these video segments with light source timing to create video with grayscale shading.

The DLPC230-Q1 receives command and input video data from a host processor in the vehicle. R/W commands can be sent using either the I²C bus or SPI bus. The bus that is not being used for R/W commands can be used as a read-only bus for diagnostic purposes. Input video can be sent over an OpenLDI bus or a parallel 24-bit bus. The 24-bit bus can be limited to only 8-bits of data for single light source systems such as headlights. The SPI flash memory provides the embedded software for the DLPC230-Q1's embedded processor and default settings. The TPS99000-Q1 provides diagnostic and monitoring information to the DLPC230-Q1 using a SPI bus and several other control signals such as PARKZ, INTZ, and RESETZ to manage power-up and power-down sequencing. The TMP411 uses an I²C interface to provide the DMD array temperature to the DLPC230-Q1.

The outputs of the DLPC230-Q1 are configuration and monitoring commands to the TPS99000-Q1, timing controls to the LED or laser driver, control signals to the DMD, and monitoring and diagnostics information to the host processor. The DLPC230-Q1 communicates with the TPS99000-Q1 over a SPI bus. It uses this to configure the TPS99000-Q1 and to read monitoring and diagnostics information from the TPS99000-Q1. The DLPC230-Q1 sends drive enable signals to the LED or laser driver, and synchronizes this with the DMD mirror timing. The control signals to the DMD are sent using a sub-LVDS interface.

The TPS99000-Q1 is a highly integrated mixed-signal IC that controls DMD power, the timing of the LEDs or lasers, and provides monitoring and diagnostics information for the DLP technology headlight system. The power sequencing and monitoring blocks of the TPS99000-Q1 properly power up the DMD and provide accurate DMD

voltage rails, and then monitor the system's power rails during operation. The integration of these functions into one IC significantly reduces design time and complexity. The TPS99000-Q1 also has several output signals that can be used to control a variety of LED or laser driver topologies. The TPS99000-Q1 also has several general-purpose ADCs that designers can use for system level monitoring.

The TPS99000-Q1 receives inputs from the DLPC230-Q1, the power rails it monitors, the host processor, and potentially several other ADC ports. The DLPC230-Q1 sends configuration and control commands to the TPS99000-Q1 over a SPI bus and several other control signals. The TPS99000-Q1 includes watchdogs to monitor the DLPC230-Q1 and verify it is operating as expected. The power rails are monitored by the TPS99000-Q1 to detect power failures or glitches and request a proper power down of the DMD in case of an error. The host processor can read diagnostics information from the TPS99000-Q1 using a dedicated SPI bus. Additionally the host can request the image to be turned on or off using a PROJ_ON signal. Lastly, the TPS99000-Q1 has several general-purpose ADCs that can be used to implement system level monitoring functions.

The outputs of the TPS99000-Q1 are diagnostic information and error alerts to the DLPC230-Q1, and control signals to the LED or laser driver. The TPS99000-Q1 can output diagnostic information to the host and the DLPC230-Q1 over two SPI buses. In case of critical system errors, such as power loss, it outputs signals to the DLPC230-Q1 that trigger power down or reset sequences. It also has output signals that can be used to implement various LED or laser driver topologies.

The DMD is a micro-electro-mechanical system (MEMS) device that receives electrical signals as an input (video data), and produces a mechanical output (mirror position). The electrical interface to the DMD is a sub-LVDS interface with the DLPC230-Q1. The mechanical output is the state of more than 1.3 million mirrors in the DMD array that can be tilted $\pm 12^{\circ}$. In a projection system the mirrors are used as pixels to display an image.

9.2.2.2 Headlight Video Input

The DLPC230-Q1 accepts 8-bit grayscale video data when used in headlight applications.

When using the parallel video port, PDATA_[16-23] are utilized (red input when using a typical RGB888 mapping). PDATA_[0-15] must be tied to ground.

When using the OpenLDI video ports, data bits R0 - R7 are utilized. B0-B7 and G0-G7 are unused.

9.3 Power Supply Recommendations

9.3.1 Power Supply Management

The TPS99000-Q1 manages power for the DLPC23x-Q1 and DMD. See Section 6.12 for all power sequencing and timing requirements.

9.3.2 Hot Plug Usage

The DLPC23x-Q1 does not support Hot Plug use (for itself or for any DMD connected to the system). As such, the system must always be powered down prior to removal of the ASIC or DMD from any system.

9.3.3 Power Supply Filtering

The following filtering circuits are recommended for the various supply inputs. High frequency 0.1-µF capacitors must be evenly distributed amongst the power balls and placed as close to the power balls as possible.

Figure 9-3. VCCK Recommended Filter

Figure 9-4. VCC11A_LVDS Recommended Filter

Figure 9-5. VCC11A_DDI Recommended Filter

Figure 9-8. VCC33IO_FLSH Recommended Filter

Figure 9-9. VCC33IO_INTF Recommended Filter

Figure 9-10. VCC33A_LVDS Recommended Filter

9.4 Layout

9.4.1 Layout Guidelines

9.4.1.1 PCB Layout Guidelines for Internal ASIC PLL Power

The following guidelines are recommended to achieve desired ASIC performance relative to the internal PLL. The DLPC23x-Q1 contains two internal PLLs that have dedicated analog supplies (VCC11AD_PLLM, GND11AD_PLLM, VCC11AD_PLLD, GND11AD_PLLD). At a minimum, VCC11AD_PLLx power and GND11AD_PLLx ground pins must be isolated using a simple passive filter consisting of two series ferrites and two shunt capacitors (to widen the spectrum of noise absorption). Recommended values and layout are shown in Table 9-1 and Figure 9-11 respectively.

Table 9-1. Recommended FLL Filter Components						
COMPONENT	PARAMETER	RECOMMENDED VALUE	UNIT			
Shunt Capacitor	Capacitance	0.1	μF			
Shunt Capacitor	Capacitance	1.0	μF			
Sorios Forrito	Impedance at 100 MHz	> 100	Ω			
Jenes i ellite	DC Resistance	< 0.40				

Table 0 4 **C**:14 a.m -

Because the PCB layout is critical to PLL performance, it is vital that the quiet ground and power are treated like analog signals. Additional design guidelines are as follows:

- All four components must be placed as close to the ASIC as possible.
- It is especially important to keep the leads of the high frequency capacitors as short as possible. ٠
- A capacitor of each value must be connected across VCC11AD PLLM / GND11AD PLLM and VCC11AD_PLLD / GND11AD_PLLD respectively on the ASIC side of the ferrites.
- VCC11AD_PLLM and VCC11AD_PLLD must be a single trace from the DLPC23x-Q1 to both capacitors and ٠ then through the series ferrites to the power source.
- The power and ground traces must be as short as possible, parallel to each other, and as close as possible to each other.

Figure 9-11. DLPC230-Q1 PLL Filter Layout

9.4.1.2 DLPC23x-Q1 Reference Clock

The DLPC23x-Q1 requires an external reference clock to feed its internal PLL. A crystal or oscillator can supply this reference. The recommended crystal configurations and reference clock frequencies are listed in Table 9-2, with additional required discrete components shown in Figure 9-13 and defined in Table 9-2.

- A. C_L = Crystal load capacitance
- B. R_{FB} = Feedback Resistor

Figure 9-13. Discrete Components Required When Using Crystal

9.4.1.2.1 Recommended Crystal Oscillator Configuration

Table 9-2. Recommended Crystal Configuration

PARAMETER	RECOMMENDED	UNIT
Crystal circuit configuration	Parallel resonant	
Crystal type	Fundamental (first harmonic)	
Crystal nominal frequency	16	MHz
Crystal frequency tolerance (including accuracy, temperature, aging and trim sensitivity)	±200	PPM
Maximum crystal equivalent series resistance (ESR)	50	Ω
Crystal load capacitance	10	pF
Temperature range	–40°C to +105°C	°C
Drive level (nominal)	100	μW
R _{FB} feedback resistor (nominal)	1	MΩ
C _{L1} external crystal load capacitor	See equation in ⁽¹⁾	pF
C _{L2} external crystal load capacitor	See equation in ⁽²⁾	pF
PCB layout	A ground isolation ring around the crystal is recommended	

(1) CL1 = 2 × (CL – Cstray_pll_refclk_i), where: Cstray_pll_refclk_i = Sum of package and PCB stray capacitance at the crystal pin associated with the ASIC pin pll_refclk_i.

(2) CL2 = 2 × (CL – Cstray_pll_refclk_o), where: Cstray_pll_refclk_o = Sum of package and PCB stray capacitance at the crystal pin associated with the ASIC pin pll_refclk_o.

The crystal circuit in the DLPC23x-Q1 ASIC has dedicated power (VCC3IO_COSC) and ground (GNDIOLA_COSC) pins, with the recommended filtering shown in Figure 9-14.

Figure 9-14. Crystal Power Supply Filtering

Table 9-3. DLPC23x-Q1 Recommended Crystal Parts						
MANUFACTURER	PART NUMBER	SPEED	FREQUENCY TOLERANCE, FREQUENCY STABILITY, AGING/YEAR	ESR	LOAD CAPACITANCE	OPERATING TEMPERATURE
тхс	AM16070006 ⁽¹⁾ 16 MHz		Freq Tolerance: ±10 ppm			
		Freq Stability: ±50 ppm	50-Ω max	10 pF	–40°C to +125°C	
			Aging/Year: ±3 ppm	-		

(1) This device requires a $3-k\Omega$ series resister to limit power.

If an external oscillator is used, the oscillator output must drive the PLL_REFCLK_O pin on the DLPC23x-Q1 ASIC, the PLL_REFCLK_I pin must be left unconnected, and the OSC_BYPASS pin must = logic HIGH.

9.4.1.3 DMD Interface Layout Considerations

The DLPC23x-Q1 ASIC subLVDS HS/LS differential interface waveform quality and timing is dependent on the total length of the interconnect system, the spacing between traces, the characteristic impedance, etch losses, and how well matched the lengths are across the interface. Thus, ensuring positive timing margin requires attention to many factors.

DLPC23x-Q1 I/O timing parameters as well as DMD I/O timing parameters can be found in their corresponding data sheets. Similarly, PCB routing mismatch can be budgeted and met through controlled PCB routing. PCB design recommendations are provided in Table 9-4 and Figure 9-15 as a starting point for the customer.

	PARAMETER ⁽¹⁾ ⁽²⁾	MIN	MAX	UNIT		
Tw	Trace Width	4		mils		
Ts	Intra-Iane Trace Spacing	4		mils		
T _{SPP}	Inter-lane Trace Spacing	2 * (T _S + T _W)		mils		
R _{BGR}	Resistor - Bandgap Reference	42.2 (1%)		kΩ		

Table 9-4. PCB Recommendations for DMD Interface

(1) Recommendations to achieve the desired nominal differential impedance as specified by Tx_{load} in Section 6.7 and Section 6.8. (2) If using the minimum trace width and spacing to escape the ASIC ball field, widening these out after escape can be desirable if

practical to achieve the target 100- Ω impedance (e.g. to reduce transmission line losses).

Signal Traces		Тѕрр	Tw to Ts
-	Differential Pair #1		Differential Pair #2
Ground Plane			

Figure 9-15. DMD Differential Layout Recommendations

9.4.1.4 General PCB Recommendations

TI recommends the following to achieve good thermal connectivity:

- A minimum of 4 power and ground planes
 - ZDQ package = 1-oz copper power planes and 2-oz copper ground planes
 - ZEK package = 1-oz copper power planes and 1-oz copper ground planes
- A copper plane beneath the thermal ball array containing a via farm with the following attributes
 - Copper plane area (top side of PCB, under package)
 - ZDQ package = 8.0 mm × 8.0 mm
 - ZEK package = 4.8 mm × 4.8 mm
 - Copper plane area (bottom side of PCB, opposite of package)
 - ZDQ package = 6.0 mm × 6.0 mm
 - ZEK package = 4.8 mm × 4.8 mm
 - Thermal via quantity
 - ZDQ package = 7 × 7 array of vias
 - ZEK package = 5 × 5 array of vias
 - Thermal via size
 - ZDQ package = 0.25 mm (10 mils)
 - ZEK package = 0.203 mm (8 mils)
 - Thermal via plating thickness
 - ZDQ package = 0.05 mm (2 mils) wall thickness
 - ZEK package = 0.025 mm (1 mils) wall thickness
- PCB copper coverage per layer
 - Power and Ground layers: 90% minimum coverage
 - Top/Bottom signal layers (ground fill to achieve coverage): 70% minimum coverage with 1.5-oz copper.

9.4.1.5 General Handling Guidelines for Unused CMOS-Type Pins

To avoid potentially damaging current caused by floating CMOS input-only pins, TI recommends that unused ASIC input pins be tied through a pull-up resistor to its associated power supply or a pull-down to ground unless specifically noted otherwise in *Section 5*. For ASIC inputs with an internal pull-up or pull-down resistors, it is unnecessary to add an external pull-up or pull-down unless specifically recommended. Note that internal pull-up and pull-down resistors are weak and must not be expected to drive the external line. When external pull-up or pull-down resistors are needed for pins that have built-in weak pull-ups or pull-downs, use the value specified in Table 5-11.

Unused output-only pins must never be tied directly to power or ground, but can be left open.

When possible, TI recommends that unused bidirectional I/O pins be configured to their output state such that the pin can be left open. If this control is not available and the pins can become an input, then they must be pulled-up (or pulled-down) using an appropriate, dedicated resistor.

9.4.1.6 Maximum Pin-to-Pin, PCB Interconnects Etch Lengths

Table 9-5. Max Pin-to-Pin PCB Interconnect Recommendations—DMD

ASIC INTERFACE	SIGNAL INTERCON		
DMD	SINGLE BOARD SIGNAL ROUTING LENGTH	MULTI-BOARD SIGNAL ROUTING LENGTH	UNIT
DMD_HS0_CLK_P DMD_HS0_CLK_N	6.0 (152.4)	See ⁽³⁾	in (mm)

ASIC INTERFACE	SIGNAL INTERCONNECT TOPOLOGY ⁽¹⁾ ⁽²⁾					
DMD	SINGLE BOARD SIGNAL ROUTING LENGTH	MULTI-BOARD SIGNAL ROUTING LENGTH	UNIT			
DMD_HS0_WDATA0_P DMD_HS0_WDATA0_N						
DMD_HS0_WDATA1_P DMD_HS0_WDATA1_N						
DMD_HS0_WDATA2_P DMD_HS0_WDATA2_N						
DMD_HS0_WDATA3_P DMD_HS0_WDATA3_N	6.0	Sec. (3)	in			
DMD_HS0_WDATA4_P DMD_HS0_WDATA4_N	(152.4)	See	(mm)			
DMD_HS0_WDATA5_P DMD_HS0_WDATA5_N						
DMD_HS0_WDATA6_P DMD_HS0_WDATA6_N						
DMD_HS0_WDATA7_P DMD_HS0_WDATA7_N						
DMD_HS1_CLK_P DMD_HS1_CLK_N	6.0 (152.4)	See ⁽³⁾	in (mm)			
DMD_HS1_WDATA0_P DMD_HS1_WDATA0_N						
DMD_HS1_WDATA1_P DMD_HS1_WDATA1_N						
DMD_HS1_WDATA2_P DMD_HS1_WDATA2_N						
DMD_HS1_WDATA3_P DMD_HS1_WDATA3_N	6.0	Sec. (3)	in			
DMD_HS1_WDATA4_P DMD_HS1_WDATA4_N	(152.4)	See	(mm)			
DMD_HS1_WDATA5_P DMD_HS1_WDATA5_N						
DMD_HS1_WDATA6_P DMD_HS1_WDATA6_N						
DMD_HS1_WDATA7_P DMD_HS1_WDATA7_N						
DMD_LS0_CLK_P DMD_LS0_CLK_N	6.5 (165.1)	See ⁽³⁾	in (mm)			
DMD_LS0_WDATA_P DMD_LS0_WDATA_N	6.5 (165.1)	See ⁽³⁾	in (mm)			
DMD_LS0_RDATA	6.5 (165.1)	See ⁽³⁾	in (mm)			
DMD_LS1_RDATA	6.5 (165.1)	See ⁽³⁾	in (mm)			
DMD_DEN_ARSTZ	N/A	N/A	in (mm)			

Table 9-5. Max Pin-to-Pin PCB Interconnect Recommendations—DMD (continued)

(1) Max signal routing length includes escape routing.

(2) Multi-board DMD routing length is more restricted due to the impact of the connector.

(3) Due to board variations, these are impossible to define. Any board designs must SPICE simulate with the ASIC IBIS models to verify signal routing lengths do not exceed requirements.

Table 9-6. Max Pin-to-Pin PCB Interconnect Recommendations - TPS99000-Q1

ASIC INTERFACE	SIGNAL INTERCONNECT TOPOLOGY ⁽¹⁾ ⁽²⁾					
TPS99000-Q1	SINGLE BOARD SIGNAL ROUTING LENGTH	MULTI-BOARD SIGNAL ROUTING LENGTH	UNIT			
PMIC_LEDSEL(3)						
PMIC_LEDSEL(2)						
PMIC_LEDSEL(1)						
PMIC_LEDSEL(0)	6.0	Soc (3)	in			
PMIC_ADC3_CLK	(152.4)		(mm)			
PMIC_ADC3_MOSI						
PMIC_ADC3_MISO						
PMIC_SEQ_STRT						

(1) Max signal routing length includes escape routing.

(2) Multiboard DMD routing length is more restricted due to the impact of the connector.

(3) Due to board variations, these are impossible to define. Any board designs must SPICE simulate with the ASIC IBIS models to verify signal routing lengths do not exceed requirements.

Table 9-7. High-Speed PCB Signal Routing Matching Requirements

SIGNAL GROUP LEN	GTH MATCHIN	IG (1) (2)			
INTERFACE	SIGNAL GROUP	REFERENCE SIGNAL	MAX MISMATCH ZDQ324	MAX MISMATCH ZEK324	UNIT
	DMD_HS0_ WDATA0_P DMD_HS0_ WDATA0_N				
DMD ⁽³⁾	DMD_HS0_ WDATA1_P DMD_HS0_ WDATA1_N	-		±1.0	in (mm)
	DMD_HS0_ WDATA2_P DMD_HS0_ WDATA2_N	-			
	DMD_HS0_ WDATA3_P DMD_HS0_ WDATA3_N	DMD_HS0_CLK_P	±1.0		
	DMD_HS0_ WDATA4_P DMD_HS0_ WDATA4_N	DMD_HS0_CLK_N	(±25.4)	(±25.4)	
	DMD_HS0_ WDATA5_P DMD_HS0_ WDATA5_N	-			
	DMD_HS0_ WDATA6_P DMD_HS0_ WDATA6_N				
	DMD_HS0_ WDATA7_P DMD_HS0_ WDATA7_N				
DMD ⁽⁴⁾	DMD_HS0_ x_P	DMD_HS0_x_N	±0.025 (±0.635)	0.0315±0.025 (0.8±0.635)	in (mm)

SIGNAL GROUP LENGTH MATCHING ⁽¹⁾ ⁽²⁾								
INTERFACE	SIGNAL GROUP	REFERENCE SIGNAL	MAX MISMATCH ZDQ324	MAX MISMATCH ZEK324	UNIT			
	DMD_HS1_ WDATA0_P DMD_HS1_ WDATA0_N DMD_HS1_ WDATA1_P DMD_HS1	-						
	WDATA1_N WDATA1_N DMD_HS1_ WDATA2_P DMD_HS1_ WDATA2_N							
	DMD_HS1_ WDATA3_P DMD_HS1_ WDATA3_N	DMD_HS1_CLK_P	±1.0 (±25.4)	±1.0 (±25.4)	in (mm)			
DMD ⁽³⁾	DMD_HS1_ WDATA4_P DMD_HS1_ WDATA4_N	DMD_HS1_CLK_N						
	DMD_HS1_ WDATA5_P DMD_HS1_ WDATA5_N							
	DMD_HS1_ WDATA6_P DMD_HS1_ WDATA6_N							
	DMD_HS1_ WDATA7_P DMD_HS1_ WDATA7_N							
DMD ⁽⁴⁾	DMD_HS1_ x_P	DMD_HS1_x_N	±0.025 (±0.635)	0.0315±0.025 (0.8±0.635) ⁽⁵⁾	in (mm)			
DMD ⁽³⁾	DMD_LS0_ WDATA_P DMD_LS0_ WDATA_N	DMD_LS0_CLK_P DMD_LS0_CLK_N	±1.0 (±25.4)	±1.0 (±25.4)	in (mm)			
DMD	DMD_LS0_ WDATA DMD_LS0_ RDATA DMD_LS1_ RDATA	DMD_LS0_CLK	±0.2 (±5.08)	±0.2 (±5.08)	in (mm)			
DMD ⁽⁴⁾	DMD_LS0_x _P	DMD_LS0_x_N	±0.025 (±0.635)	0.0315±0.025 (0.8±0.635) ⁽⁵⁾	in (mm)			
DMD	DMD_DEN_ ARSTZ	N/A	N/A	N/A	in (mm)			

Table 9-7. High-Speed PCB Signal Routing Matching Requirements (continued)

Table 9-7. High-Speed PCB Signal Routing Matching Requirements (continued)

INTERFACE	SIGNAL GROUP	REFERENCE SIGNAL	MAX MISMATCH ZDQ324	MAX MISMATCH ZEK324	UNIT
	PMIC_LEDS EL(3)				
TPS99000-Q1	PMIC_LEDS EL(2)				in (mm)
	PMIC_LEDS EL(1)		±1.0 (±25.4)	±1.0 (±25.4)	
	PMIC_LEDS EL(0)	PMIC_ADC3_CLK			
	PMIC_SEQ_ STRT	-			
	PMIC_ADC3 _MOSI	-			
OpenLDI	Lx_DATAx_ N	Lx_DATAx_P	N/A	0.0315±0.025 (0.8±0.635) ⁽⁶⁾	in (mm)
OpenLDI	Lx_CLK_N	Lx_CLK_P	N/A	0.0315±0.025 (0.8±0.635) ⁽⁶⁾	in (mm)

(1) These routing requirements are specific to the PCB routing. Internal package routing mismatches in the DLPC23x-Q1 and DMD have already been accounted for in these requirements.

(2) Training is applied to DMD HS data lines, so defined matching requirements are slightly relaxed.

(3) This is an inter-pair specification (that is, differential pair to differential pair within the group).

(4) This is an intra-pair specification (that is, length mismatch between P and N for the same pair).

(5) ZEK324 package trace length of the DMD interface differential N signals are 0.8mm longer than the P signals to simplify matching of the PCB signals.

(6) ZEK324 package trace length of the OpenLDI interface differential P signals are 0.8mm longer than the N signals to simplify matching of the PCB signals.

9.4.1.7 Number of Layer Changes

- Single-ended signals: Minimize the number of layer changes.
- Differential signals: Individual differential pairs can be routed on different layers, but the signals of a given pair must not change layers.

9.4.1.8 Stubs

• Stubs must be avoided.

9.4.1.9 Terminations

- No external termination resistors are required on the DMD_HS or DMD_LS differential signals.
- The DMD_LS0_RDATA and DMD_LS1_RDATA single-ended signal paths must include a 10-Ω series termination resistor located as close as possible to the corresponding DMD pin.
- DMD_DEN_ARSTZ does not typically require a series resistor, however, for a long trace, one can be needed to reduce undershoot/overshoot.

9.4.1.10 Routing Vias

• The number of vias on each DMD_HS and DMD_LS signal must be minimized and must not exceed two. If two are required, one must be placed at each end of the line (one at the ASIC and one at the DMD).

9.4.2 Thermal Considerations

The underlying thermal limitation for the DLPC23x-Q1 is that the maximum operating junction temperature (T_J) not be exceeded (this is defined in Section 6.3). This temperature is dependent on operating ambient temperature, airflow, PCB design (including the component layout density and the amount of copper used), power dissipation of the DLPC23x-Q1, and power dissipation of surrounding components. The DLPC23x-Q1's package is designed primarily to extract heat through the power and ground planes of the PCB. Thus, copper content and airflow over the PCB are important factors.

TI highly recommends that after the host PCB is designed and built that the thermal performance be measured and validated.

To do this, measure the top center case temperature under the worse case product scenario (max power dissipation, max voltage, max ambient temperature) and validate that the maximum recommended case temperature (T_C) is not exceeded. This specification is based on the measured ϕ_{JT} for the DLPC23x-Q1 package and provides a relatively accurate correlation to junction temperature. Take care when measuring this case temperature to prevent accidental cooling of the package surface. TI recommends a small (approximately 40 gauge) thermocouple. The bead and thermocouple wire must contact the top of the package and be covered with a minimal amount of thermally conductive epoxy. The wires must be routed closely along the package and the board surface to avoid cooling the bead through the wires.

10 Device and Documentation Support

10.1 Device Support

10.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

10.1.2 Device Nomenclature

10.1.2.1 Device Markings

Marking Definitions:

Line 1:	TI Part Number: Engineering Samples	X = Engineering Samples DLPC230 = Device ID blank or A, B, C = Part Revision T = Temperature designator ZDQ = Package designator Q1 = Automotive qualified
	TI Part Number: Production	DLPC230 = Device ID blank or A, B, C = Part Revision S = Functional Safety T = Temperature designator ZDQ = Package designator Q1 = Automotive qualified
Line 2:	Vendor Lot and Fab Information	XXXXX = Fab lot number -XX = Fab sub-lot X (last X) = Assembly sub-lot The Fab is UMC12A. As such, the first character of the lot number is K
Line 3:	Vendor Year and Week code	YY = Year WW = Week Example, 1614 - parts built the 14 th week of 2016

10.1.2.2 Video Timing Parameter Definitions

Active Lines Per Frame (ALPF)	Defines the number of lines in a frame containing displayable data: ALPF is a subset of the TLPF.
Active Pixels Per Line (APPL)	Defines the number of pixel clocks in a line containing displayable data: APPL is a subset of the TPPL.

Horizontal Back Porch (HBP) Blanking	Number of blank pixel clocks after horizontal sync but before the first active pixel. Note: HBP times are reference to the leading (active) edge of the respective sync signal.
Horizontal Front Porch (HFP) Blanking	Number of blank pixel clocks after the last active pixel but before Horizontal Sync.
Horizontal Sync (HS)	Timing reference point that defines the start of each horizontal interval (line). The absolute reference point is defined by the active edge of the HS signal. The active edge (either rising or falling edge as defined by the source) is the reference from which all horizontal blanking parameters are measured.
Total Lines Per Frame (TLPF)	Defines the vertical period (or frame time) in lines: TLPF = Total number of lines per frame (active and inactive).
Total Pixel Per Line (TPPL)	Defines the horizontal line period in pixel clocks: TPPL = Total number of pixel clocks per line (active and inactive).
Vertical Sync (VS)	Timing reference point that defines the start of the vertical interval (frame). The absolute reference point is defined by the active edge of the VS signal. The active edge (either rising or falling edge as defined by the source) is the reference from which all vertical blanking parameters are measured.
Vertical Back Porch (VBP) Blanking	Number of blank lines after vertical sync but before the first active line.
Vertical Front Porch (VFP) Blanking	Number of blank lines after the last active line but before vertical sync.

10.2 Trademarks

DLP[®] is a registered trademark of Texas Instruments. All trademarks are the property of their respective owners.

10.3 Electrostatic Discharge Caution

Real Providence

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.4 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

Copyright © 2023 Texas Instruments Incorporated

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

11.1 DLPC230-Q1 Mechanical Data

23-mm × 23-mm Package – Plastic Ball Grid Array

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
DLPC230TZDQQ1	ACTIVE	BGA	ZDQ	324	1	TBD	Call TI	Call TI	-40 to 105		Samples
DLPC230TZDQRQ1	ACTIVE	BGA	ZDQ	324	250	TBD	Call TI	Call TI	-40 to 105		Samples
XDLPC231ZEKQ1	ACTIVE	NFBGA	ZEK	324	1	TBD	Call TI	Call TI	-40 to 125		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated