Dual 4-Input Multiplexer

The MC74AC153/74ACT153 is a high–speed dual 4–input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (non–inverted) form. In addition to multiplexer operation, the MC74AC153/74ACT153 can act as a function generator and generate any two functions of three variables.

- Outputs Source/Sink 24 mA
- 'ACT153 Has TTL Compatible Inputs
- These are Pb-Free Devices

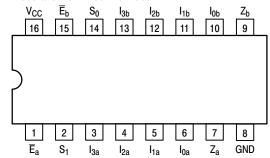


Figure 1. Pinout: 16-Lead Packages Conductors (Top View)

PIN ASSIGNMENT

PIN	FUNCTION
I _{0a} –I _{3a}	Side A Data Inputs
I _{0b} –I _{3b}	Side B Data Inputs
S ₀ , S ₁	Common Select Inputs
Ēa	Side A Enable Input
Ēb	Side B Enable Input
Za	Side A Output
Z _b	Side B Output

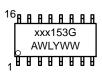
TRUTH TABLE

Sel Inp			Output				
S ₀	S ₁	Ē	I ₀	I ₁	l ₂	l ₃	Z
Χ	Χ	Н	Χ	Χ	Χ	Χ	L
L	L	L	L	Χ	Χ	Χ	L
L	L	L	Н	Χ	Χ	Χ	Н
Н	L	L	Х	L	Χ	Χ	L
Н	L	L	Х	Н	Х	Х	Н
L	Н	L	Χ	Χ	L	Χ	L
L	Н	L	Χ	Χ	Н	Χ	Н
Н	Н	L	Χ	Χ	Χ	L	L
Н	Н	L	Χ	Χ	Χ	Н	Н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

xxx = AC or ACT

A = Assembly Location

WL or L = Wafer Lot Y = Year WW or W = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

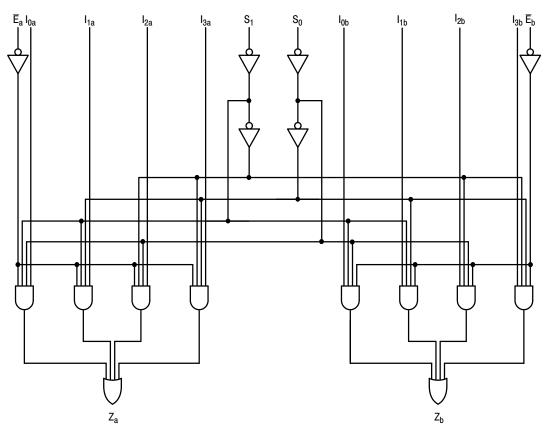


Figure 2. Logic Symbol

FUNCTIONAL DESCRIPTION

The MC74AC153/74ACT153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs (S_0 , S_1). The two 4-input multiplexer circuits have individual active–LOW Enables (\overline{E}_a , \overline{E}_b) which can be used to strobe the outputs independently. When the Enables (\overline{E}_a , \overline{E}_b) are HIGH, the corresponding outputs (Z_a , Z_b) are forced LOW. The MC74AC153/74ACT153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are shown below.

$$\begin{split} Z_a &= \overline{E}_{a} \bullet (I_{0a} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1a} \bullet \overline{S}_1 \bullet S_0 + I_{2a} \bullet S_1 \bullet \overline{S}_0 + I_{3a} \bullet S_1 \bullet S_0) \\ Z_b &= \overline{E}_{b} \bullet (I_{0b} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1b} \bullet \overline{S}_1 \bullet S_0 + I_{2b} \bullet S_1 \bullet \overline{S}_0 + I_{3b} \bullet S_1 \bullet S_0) \end{split}$$

NOTE: This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 3. Logic Diagram

MAXIMUM RATINGS

			Unit
DC Supply Voltage		-0.5 to +7.0	V
DC Input Voltage		$-0.5 \le V_I \le V_{CC} + 0.5$	V
DC Output Voltage	(Note 1)	$-0.5 \le V_{O} \le V_{CC} + 0.5$	V
DC Input Diode Current	±20	mA	
DC Output Diode Current		±50	mA
DC Output Sink/Source Current		±50	mA
DC Supply Current per Output Pin		±50	mA
DC Ground Current per Output Pin		±50	mA
Storage Temperature Range		-65 to +150	°C
Lead temperature, 1 mm from Case for 10 Seconds		260	°C
Junction temperature under Bias		+ 150	°C
Thermal Resistance (Note 2)	SOIC TSSOP	69.1 103.8	°C/W
Power Dissipation in Still Air at 65°C (Note 3)	SOIC TSSOP	500 500	mW
Moisture Sensitivity		Level 1	
Flammability Rating Oxygen I	ndex: 30% – 35%	UL 94 V-0 @ 0.125 in	
Machi	ne Model (Note 5)	> 2000 > 200 > 1000	V
Latch-Up Performance Above V _{CC} and Below GNI	O at 85°C (Note 7)	±100	mA
	DC Input Voltage DC Output Voltage DC Input Diode Current DC Output Diode Current DC Output Sink/Source Current DC Supply Current per Output Pin DC Ground Current per Output Pin Storage Temperature Range Lead temperature, 1 mm from Case for 10 Seconds Junction temperature under Bias Thermal Resistance (Note 2) Power Dissipation in Still Air at 65°C (Note 3) Moisture Sensitivity Flammability Rating Oxygen I ESD Withstand Voltage Human Bo Machi Charged Devi	DC Input Voltage DC Output Voltage (Note 1) DC Input Diode Current DC Output Diode Current DC Output Sink/Source Current DC Supply Current per Output Pin DC Ground Current per Output Pin Storage Temperature Range Lead temperature, 1 mm from Case for 10 Seconds Junction temperature under Bias Thermal Resistance (Note 2) SOIC TSSOP Power Dissipation in Still Air at 65°C (Note 3) SOIC TSSOP Moisture Sensitivity Flammability Rating Oxygen Index: 30% – 35% ESD Withstand Voltage Human Body Model (Note 4) Machine Model (Note 5) Charged Device Model (Note 7) Latch-Up Performance Above V _{CC} and Below GND at 85°C (Note 7)	DC Input Voltage $-0.5 \leq V_{I} \leq V_{CC} + 0.5$ DC Output Voltage $(Note \ 1) \qquad -0.5 \leq V_{O} \leq V_{CC} + 0.5$ DC Input Diode Current ± 20 DC Output Diode Current ± 50 DC Output Sink/Source Current ± 50 DC Output Sink/Source Current ± 50 DC Supply Current per Output Pin ± 50 DC Ground Current per Output Pin ± 50 Storage Temperature Range $-65 \text{ to } + 150$ Lead temperature, 1 mm from Case for 10 Seconds 260 Junction temperature under Bias $+ 150$ Thermal Resistance (Note 2) $-65 \text{ to } + 150$ Thermal Resistance (Note 2) $-68 \text{ lo} + 150$ To SOIC $-69 \text{ lo} + 150$ Moisture Sensitivity $-69 \text{ lo} + 150$ ESD Withstand Voltage $-69 \text{ lo} + 150$ Machine Model (Note 4) $-69 \text{ lo} + 150$ Machine Model (Note 4) $-69 \text{ lo} + 150$ Machine Model (Note 5) $-69 \text{ lo} + 150$ Machine Model (Note 4) $-69 \text{ lo} + 150$ Machine Model (Note 5) $-69 \text{ lo} + 150$ Machine Model (Note 5) $-69 \text{ lo} + 150$ Machine Model (Note 6) $-69 \text{ lo} + 150$ Machine Model (Note 5) $-69 \text{ lo} + 150$ Machine Model (Note 6) $-69 \text{ lo} + 1$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Io absolute maximum rating must be observed.
- 2. The package thermal impedance is calculated in accordance with JESD51-7.
- 3. 500 mW at 65°C; derate to 300 mW by 10 mW/ from 65°C to 85°C.
- 4. Tested to EIA/JESD22-A114-A.
- 5. Tested to EIA/JESD22-A115-A.
- 6. Tested to JESD22-C101-A.
- 7. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit		
.,	0 1 1/1	'AC	2.0	5.0	6.0	.,		
V _{CC}	Supply Voltage	'ACT	4.5	5.0	5.5	V		
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)	0	-	Vcc	V			
			-	150	_			
t _r , t _f	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	_	ns/V		
	The Devices except estimating as	V _{CC} @ 5.5 V	-	25	_			
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	-	10	_			
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	-	8.0	_	ns/V		
TJ	Junction Temperature (PDIP)		-	-	140	°C		
T _A	Operating Ambient Temperature Range	-40	25	85	°C			
I _{OH}	Output Current – High	-	-	-24	mA			
I _{OL}	Output Current – Low	-	-	24	mA			

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

- V_{IN} from 30% to 70% V_{CC}; see individual Data Sheets for devices that differ from the typical input rise and fall times.
 V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74.	AC	74AC		Conditions	
Symbol	Parameter	V _{CC} (V)	T _A = -	+25°C	T _A = -40°C to +85°C	Unit		
			Тур	Gua	ranteed Limits			
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA	
		3.0 4.5 5.5	- - -	2.56 3.86 4.86	2.46 3.76 4.76	V	* V _{IN} = V _{IL} or V _{IH} -12 mA I OH -24 mA -24 mA	
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	Ι _{ΟυΤ} = 50 μΑ	
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	V	* V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND	
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max	
I _{OHD}	Output Current	5.5	-	-	- 75	mA	V _{OHD} = 3.85 V Min	
Icc	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	V _{IN} = V _{CC} or GND	

^{*}All outputs loaded; thresholds on input associated with output under test.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC} .

AC CHARACTERISTICS

			74AC T _A = +25°C C _L = 50 pF			74	AC		
Symbol	Parameter	V _{CC} * (V)				$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay S _n to Z _n	3.3 5.0	2.5 2.0	9.5 6.5	15.0 11.0	2.5 2.0	17.5 12.5	ns	3–6
t _{PHL}	Propagation Delay S _n to Z _n	3.3 5.0	3.0 2.5	8.5 6.5	14.5 11.0	2.5 2.0	16.5 12.0	ns	3–6
t _{PLH}	Propagation Delay E _n to Z _n	3.3 5.0	2.5 1.5	8.0 5.5	13.5 9.5	2.0 1.5	16.0 11.0	ns	3–6
t _{PHL}	Propagation Delay \overline{E}_n to Z_n	3.3 5.0	2.5 2.0	7.0 5.0	11.0 8.0	2.0 1.5	12.5 9.0	ns	3–6
t _{PLH}	Propagation Delay I _n to Z _n	3.3 5.0	2.5 1.5	7.5 5.5	12.5 9.0	2.0 1.5	14.5 10.5	ns	3–5
t _{PHL}	Propagation Delay I_n to Z_n	3.3 5.0	1.5 1.5	7.0 5.0	11.5 8.5	1.5 1.5	13.0 10.0	ns	3–5

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. *Voltage Range 5.0 V is 5.0 V ± 0.5 V.

[†]Maximum test duration 2.0 ms, one output loaded at a time.

DC CHARACTERISTICS

			74	CT	74ACT			
Symbol	Parameter	V _{CC} (V)	T _A =	+25°C	T _A = -40°C to +85°C	Unit	Conditions	
			Тур	Gua	ranteed Limits			
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} - 0.1 V	
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA	
		4.5 5.5		3.86 4.86	3.76 4.76	V	$^*V_{IN} = V_{IL} \text{ or } V_{IH}$ $^{-24} \text{ mA}$ ^{1}OH $^{-24} \text{ mA}$	
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA	
		4.5 5.5	_ _	0.36 0.36	0.44 0.44	V	$^*V_{IN} = V_{IL} \text{ or } V_{IH}$ $^{24} \text{ mA}$ ^{1}OL $^{24} \text{ mA}$	
I _{IN}	Maximum Input Leakage Current	5.5	_	±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND	
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	_	1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$	
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max	
I _{OHD}	Output Current	5.5	-	-	- 75	mA	V _{OHD} = 3.85 V Min	
I _{CC}	Maximum Quiescent Supply Current	5.5	_	8.0	80	μΑ	V _{IN} = V _{CC} or GND	

^{*}All outputs loaded; thresholds on input associated with output under test.

AC CHARACTERISTICS

			74ACT T _A = +25°C C _L = 50 pF			$74ACT$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$		Unit	
Symbol	Parameter	V _{CC} * (V)							Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay S _n to Z _n	5.0	3.0	7.0	11.5	2.0	13.5	ns	3–6
t _{PHL}	Propagation Delay S_n to Z_n	5.0	3.0	7.0	11.5	2.5	13.5	ns	3–6
t _{PLH}	Propagation Delay \overline{E}_n to Z_n	5.0	2.0	6.5	10.5	2.0	12.5	ns	3–6
t _{PHL}	Propagation Delay \overline{E}_n to Z_n	5.0	3.0	6.0	9.5	2.5	11.0	ns	3–6
t _{PLH}	Propagation Delay I _n to Z _n	5.0	2.5	5.5	9.5	2.0	11.0	ns	3–5
t _{PHL}	Propagation Delay I _n to Z _n	5.0	2.0	5.5	9.5	2.0	11.0	ns	3–5

^{*}Voltage Range 5.0 V is 5.0 V ± 0.5 V.

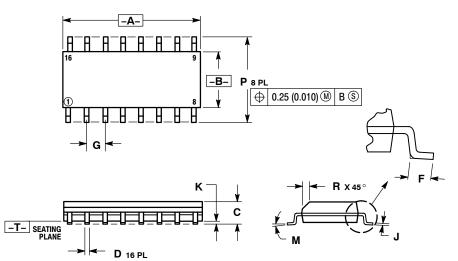
CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions	
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V	
C _{PD}	Power Dissipation Capacitance	65	pF	V _{CC} = 5.0 V	

[†]Maximum test duration 2.0 ms, one output loaded at a time.

ORDERING INFORMATION

Device Order Number	Package	Shipping [†]
MC74AC153DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74AC153DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74AC153DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel
MC74ACT153DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74ACT153DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74ACT153DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOIC-16 CASE 751B-05 **ISSUE K**

DATE 29 DEC 2006

⊕ 0.25 (0.010) M T B S A S

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD ENGREPHING.

- PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION.
 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	9.80	10.00	0.386	0.393		
В	3.80	4.00	0.150	0.157		
U	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27	BSC	0.050 BSC			
7	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7°	0°	7°		
Р	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		
	COLLECTOR	PIN 1.	CATHODE	PIN 1.		PIN 1.	COLLECTOR, DYE #	1
2.	BASE	2.	ANODE	2.	BASE, #1	2.	COLLECTOR, #1	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2	
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3	
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3	
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4	
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4	
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4	
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4	
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3	
12.	EMITTER	12.		12.	COLLECTOR, #3	12.	EMITTER, #3	
13.	BASE	13.		13.		13.	BASE, #2	RECOMMENDED
14.	COLLECTOR	14.	NO CONNECTION	14.		14.	EMITTER, #2	SOLDERING FOOTPRINT*
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	BASE, #1	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1	8X
								← 6.40 →
STYLE 5:		STYLE 6:		STYLE 7:				
PIN 1.	DRAIN, DYE #1		CATHODE		SOURCE N-CH			16X 1.12 <
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPU	T)		<u> </u>
3.	DRAIN, #2	3.	CATHODE	3.	COMMON DRAIN (OUTPU			1 16
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	,	<u>1</u>	
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPU	T)		
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPU	T)	16X 7	
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPU	T)	0.58	
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH			
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPU		_	
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPU			
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPU	T)		
13.	GATE, #2	13.	ANODE	13.	GATE N-CH			
14.	SOURCE, #2		ANODE	14.				
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPU	Τ)		PITCH
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH			
								□□18 9 + □ +
								DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-16		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights or the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales